ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

Le cerveau

 



 

 

 

 

 

Le cerveau
Publié le 16 mars 2023
       
Organe complexe, le cerveau et son fonctionnement restent la source de nombreux mystères. Découvrez dans cette fiche "L'essentiel sur..." la composition du cerveau, son organisation, les moyens d’exploration du cerveau ou encore le processus d’apprentissage de la lecture chez l’Homme.   

                                                                                               
A QUOI SERT LE CERVEAU ?
Protégé par la boîte crânienne, le cerveau est l’organe qui fait office de chef d’orchestre pour tous les membres et organes du corps humain. Il centralise les informations et renvoie des messages aux différents membres. Il se compose de deux hémisphères reliés : l’hémisphère gauche et l’hémisphère droit, qui contrôlent chacun la partie du corps qui lui est opposée. La main droite sera donc contrôlée par une partie de l’hémisphère gauche.

DE QUOI EST COMPOSÉ LE CERVEAU ?
On distingue deux catégories de tissus dans le cerveau : la matière grise et la matière blanche.
La matière grise est faite des corps cellulaires des neurones, de leurs dendrites et d’autres cellules. Elle est responsable de notre activité sensori-motrice et de nos fonctions cognitives comme la lecture, le calcul, l’attention, la mémoire...
Les neurones sont des cellules du cerveau qui servent à transmettre les informations. Ils sont tous interconnectés et communiquent entre eux par messages électriques et chimiques au travers de milliers de petites branches appelées dendrites sur lesquelles se terminent les axones, prolongement des neurones pour transmettre l’information à distance.



Ce message  est transmis au corps cellulaire pour y être traité. L’information est émise sous la forme d’un message électrique le long de l’axone, une partie de la cellule qui fait office de route pour l’information. L’axone se ramifie ensuite pour distribuer le message aux autres neurones. Puisque les neurones ne se touchent pas, le message électrique est transformé en message chimique pour être capté par les dendrites de l’autre neurone.
La matière blanche est, quant à elle, constituée de ces axones, enveloppés d’un manchon graisseux de myéline, reliant les différentes régions de matière grise afin qu’elles échangent leur information.


QUELLE EST L’ANATOMIE DU CERVEAU ?
Chacun des hémisphères du cerveau est divisé en cinq régions (quatre extérieures et une enfouie : le cortex insulaire ou Insula). Ces lobes sont composés de zones plus petites qui gèrent des fonctions précises. Elles sont appelées aires cérébrales. On en dénombre aujourd’hui près de  200 par hémisphère.
Dans ces zones, les neurones sont spécialisés dans une fonction précise comme transmettre un message visuel, sonore, sensitif. Les zones des différents lobes coopèrent pour réaliser les tâches complexes. Par exemple, le langage fait intervenir plusieurs zones de différents lobes pour nous permettre de parler ou lire.
*         Le lobe frontal est le siège de la parole, du langage et du raisonnement. Il a également la fonction de gérer les mouvements des membres.
*         Le lobe pariétal est la partie qui va s’occuper du repérage dans l’espace, des sens et de la lecture
*         Le lobe occipital est dédié à la vision
*         Le lobe temporal est la zone où se situent le langage, la mémoire et l’émotivité.
*         Le cortex insulaire ou Insula est spécialisé dans la perception de soi/sa conscience, dans la socialisation et impacte également les émotions.


Les régions associées à certaines fonctions sont localisées à des endroits variant légèrement d’un individu à l’autre. Par ailleurs, la spécialisation hémisphérique de certaines fonctions comme le langage varie : elle est majoritairement située dans l’hémisphère gauche chez les droitiers mais peut se situer dans l’hémisphère droit, comme chez la plupart des gauchers.
Ces différentes régions du cerveau sont connectées pour combiner les messages. C’est cette coopération des zones qui permet, par exemple, la reconnaissance de visages ou de lieux.

COMMENT LE CERVEAU PERMET-IL D’APPRENDRE À LIRE ?
Les zones du cerveau s’adaptent et interagissent ensemble en fonction des besoins et des tâches réalisées. Lorsque l’on apprend à lire, une zone du cerveau, située entre les lobes occipital et pariétal, va se spécialiser dans la reconnaissance et la mémorisation des lettres et des mots.
Dans l’apprentissage de la lecture, l’aire auditive du lobe temporal est également nécessaire pour faire correspondre ce qui est écrit à un son déjà appris. Dans la lecture, les neurones de l’aire visuelle vont se connecter à ceux de l’aire auditive. Cette connexion permet de déchiffrer le mot et de l’entendre dans sa tête.
A ce stade, le mot est entendu mais pas encore compris. Il faut donner du sens à ce message sonore. Pour cela l’aire auditive est connectée à l’aire de Wernicke, la partie du cerveau qui comme un dictionnaire, donne le sens des mots entendus.
Si l’assemblage de phonèmes (briques sonores qui constituent les mots) ne correspond pas à un mot connu, le cerveau va mémoriser à la fois le sens, le son du mot et son écriture.


COMMENT EXPLORE-T-ON LE CERVEAU ?
Arriver à observer le cerveau ne va pas de soi car il est abrité par la boîte crânienne. L’observer est essentiel pour comprendre son fonctionnement, l’apparition et le développement des maladies. La méthode d’imagerie la plus ancienne, la radiographie (rayons X) est peu informative pour étudier le cerveau car les rayons X sont en grande partie absorbés par l’os de la boîte crânienne. Le scanner à rayons  X, grâce à des capteurs très sensibles et un couplage informatique, permet de voir le cerveau et est utilisé en routine en médecine.


Outre le scanner X  le cerveau est exploré à l’aide de 3 autres grandes familles d’imagerie, qui font appel à des principes physiques différents : l’activité électrique et magnétique du cerveau, la radioactivité ou la résonance magnétique de certains noyaux atomiques.

L’électroencéphalographie (EEG)
L'électroencéphalographie mesure des signaux électriques produits par l’activité des neurones. Elle est très utilisée pour localiser les foyers épileptogènes (endroit où se situe la source d’une crise d’épilepsie) ou pour rechercher une signature spécifique de l’état de conscience des patients en situation de coma.
Cet outil est parfois associé à la magnéto encéphalographie (MEG) qui est un outil de mesure de l’activité magnétique  du cerveau  associée aux courants produits par les neurones. L'atout de l’EEG et de la MEG est leur résolution temporelle, de l’ordre de la milliseconde. La MEG qui n’est pas perturbée par l’os et le scalp (cuir chevelu) génère des signaux plus propres.

L’imagerie nucléaire : la tomographie par émission de positons (TEP) ou de photons
La tomographie par émission de positons (TEP) ou tomographie par émission de photons sont des méthodes qui s’appuient sur des principes de la physique nucléaire pour étudier ce qui se passe dans le corps humain. Ces techniques offrent une analyse quantitative des réactions biochimiques du corps, comme par exemple la neurotransmission (transmission des informations entre les neurones). Pour cela, les médecins injectent au patient des molécules (appelées « traceurs ») combinées avec des éléments faiblement radioactifs qui ciblent les régions du corps où ont lieu les processus biochimiques à analyser. Pour ces examens, les atomes radioactifs utilisés ont une demi-vie relativement courte (6 h pour le technétium 99m, l’isotope le plus utilisé, 13 h pour l’iode 123) et leur radioactivité a disparu au bout de quelques jours (10 demi-vies).

L’imagerie par résonance magnétique (IRM)

L’IRM repose sur les propriétés magnétiques des atomes d’hydrogène des molécules d’eau qui composent à plus de 80 % le corps humain. L’atome d’hydrogène possède un "moment magnétique", ou spin, qui agit comme un aimant.
L’appareil IRM consiste à créer un champ magnétique puissant grâce à une bobine. Le patient est placé au centre de ce champ magnétique, et toutes les molécules d’eau présentes dans le corps vont s’orienter selon la direction du champ magnétique. Une antenne placée sur la partie du corps étudiée va permettre d’émettre et de réceptionner une onde radiofréquence spécifique des atomes d’hydrogène.
A l’émission, la fréquence induite va faire basculer l’aimantation des noyaux des molécules dans un plan perpendiculaire aux champs magnétiques de l’IRM. Lorsque l’antenne arrête d’émettre, l’aimantation revient à la position d’origine en émettant à leur tour une fréquence captée par l’antenne. Celle-ci est ensuite traitée comme un signal électrique et analysée par des logiciels. Le signal diffère selon que les tissus observés contiennent plus ou moins d’eau.

QUELS SONT LES ENJEUX DE LA RECHERCHE SUR LE CERVEAU ?
Les deux principaux enjeux de la recherche sur le cerveau sont :
*         l’acquisition de nouvelles connaissances fondamentales sur le fonctionnement de l’organe (au niveau microscopique et macroscopique)
*         la compréhension des maladies ou troubles qui l’affectent.
Pour cela il faut rechercher de nouveaux signaux de l’activité neuronale, mettre au point de meilleurs outils d’imagerie médicale et concevoir de nouveaux traceurs.

 

  DOCUMENT     cea         LIEN

 
 
 
 

Des pansements pour rgnrer les articulations

 

 

 

 

 

 

 

Des pansements pour régénérer les articulations

14 MAI 2019 | PAR INSERM (SALLE DE PRESSE) | TECHNOLOGIE POUR LA SANTE
 

Cartilage articulaire © Inserm/Chappard, Daniel

Des chercheurs de l’Inserm et de l’Université de Strasbourg au sein de l’Unité 1260  » Nanomédecine régénérative » ont mis au point un implant qui, appliqué comme un pansement, permet de régénérer les cartilages en cas de lésions importantes des articulations ou d’arthrose débutante. Les détails de cette innovation validée en phase préclinique sont publiés ce jour dans Nature communication.

L’allongement de l’espérance de vie et l’augmentation des traumatismes accidentels nécessitent une augmentation des interventions chirurgicales visant à remplacer une articulation défectueuse. Parmi les pathologies chroniques, l’arthrose, décrite comme une destruction du cartilage touchant toutes les structures de l’articulation, dont l’os et le tissu synovial, qui tapisse l’intérieur des articulations représente un réel problème de santé publique. Selon le diagnostic médical, plusieurs options thérapeutiques sont possibles allant de la microgreffe à la pose d’une prothèse. Néanmoins, ces interventions sont toutes invasives et/ou douloureuses pour le patient, avec une efficacité limitée et des effets secondaires.

Aujourd’hui, en dehors de la pose de prothèses, on se contente en réalité de réparer provisoirement le cartilage des articulations et d’alléger les douleurs.  Les traitements consistent surtout à injecter des anti-inflammatoires ainsi que de l’acide hyaluronique pour améliorer la viscosité de l’articulation. Des cellules souches peuvent être aussi utilisées, notamment parce qu’elles sécrètent des molécules capables de contrôler l’inflammation.

Dans ce contexte et afin de régénérer ce tissu conjonctif, souple et souvent élastique qui recouvre nos articulations et permet aux os de bouger et de glisser l’un par rapport à l’autre, une équipe de recherche associant l’Inserm et l’université de Strasbourg vient de mettre au point un pansement pour le cartilage – inspiré des pansements de nouvelle génération qui forment comme une seconde peau sur les plaies cutanées. Avec les pansements développés par la chercheuse et son équipe, la réponse thérapeutique passe un nouveau cap. On n’est plus seulement dans la réparation, on parle réellement de régénération du cartilage articulaire.

L’équipe de chercheurs de l’Inserm et de l’Université de Strasbourg 1260 sous la direction de Madame Benkirane-Jessel a en effet mis au point une technique innovante d’implant ostéoarticulaire, capable de reconstituer une articulation endommagée et dont l’application peut être comparée à celle des pansements. « L’implant que nous avons développé se destine à deux cas en particulier, d’une part les grandes lésions du cartilage et d’autre part les arthroses débutantes. » explique la chercheuse.

Dans le détail, ces pansements articulaires  sont composés de deux couches successives. La première, qui fait office de support (pansements classiques), est une membrane composée de nanofibres de polymères et dotée de petites vésicules contenant des facteurs de croissance en quantités similaires à celles que nos cellules sécrètent elles même. La seconde est une couche d’hydrogel chargée d’acide hyaluronique et de cellules souches provenant de la moelle osseuse du patient lui-même, ce sont ces cellules qui, en se différenciant en chondrocytes (cellules qui forment le cartilage) vont régénérer le cartilage de l’articulation.

Les scientifiques entrevoient un avenir prometteur pour leur « pansement à cartilage » : en plus de l’articulation du genou et de l’épaule, celui-ci pourrait aussi être utilisé pour l’articulation temporo-mandibulaire, liée à la mâchoire. Assez handicapante, celle-ci peut conduire à des douleurs, des bruits articulaires mais surtout à une baisse de l’amplitude de l’ouverture de la bouche. L’équipe de chercheurs a d’ores et déjà mené des essais concernant des lésions cartilagineuses chez le petit animal, la souris et le rat, ainsi que chez le grand animal, la brebis et la chèvre, des modèles très adaptés à l’étude comparée des cartilages avec l’homme. L’objectif est de lancer un essai chez l’homme avec une petite cohorte de 15 patients.

Ce projet a été soutenu par la Satt conectus, L’ANR et la grande région Est.

 

 DOCUMENT        inserm        LIEN

 
 
 
 

Les anticorps IgA jouent un rle dans le contrle de Candida albicans

 

 

 

 

 

 

 

Les anticorps IgA jouent un rôle dans le contrôle de Candida albicans

19 JUIN 2023 | PAR INSERM (SALLE DE PRESSE) | IMMUNOLOGIE, INFLAMMATION, INFECTIOLOGIE ET MICROBIOLOGIE

L’équipe du Centre d’Immunologie et des Maladies Infectieuses de l’Hôpital Pitié-Salpêtrière AP-HP, de l’Inserm et de Sorbonne Université, coordonnée par le Pr Guy Gorochov, a étudié le rôle des immunoglobulines A (IgA) dans l’équilibre du mycobiote intestinal et comment ces anticorps participent à la préservation de l’homéostasie de la barrière intestinale vis-à-vis du champignon Candida albicans. Les résultats de ces travaux ont fait l’objet le 9 mai 2023 d’une publication ainsi que d’un éditorial dans la revue Journal of Allergy and Clinical Immunology (JACI).

Le corps humain abrite des bactéries et des virus, mais également une collection de champignons, appelée mycobiote. Ce dernier colonise différents sites de notre organisme, notamment l’intestin.

Candida albicans est un champignon naturellement présent au niveau des muqueuses buccales, vaginales et digestives des humains, largement répandu dans la population mais responsable d’infections opportunistes mortelles chez les patients immunodéprimés. Sa pathogénicité est notamment liée à sa capacité de conversion d’un stade de levure ronde inoffensive vers une forme filamenteuse capable d’envahir les cellules épithéliales de la muqueuse intestinale, entraînant une infection généralisée.

Les immunoglobulines A (IgA) sont les anticorps les plus abondamment sécrétés par l’organisme. Les IgA sécrétoires1 interagissant avec les bactéries commensales2 et jouent un rôle central dans la préservation de la diversité de notre flore bactérienne en évitant la surcroissance de pathogènes envahissants. L’équipe a postulé que l’IgA pourrait également préserver la diversité du mycobiote selon des mécanismes qui restaient à définir. L’impact de cet anticorps sur l’écologie du mycobiote humain reste en effet peu étudié. Il n’était notamment pas connu si le déficit en IgA, qui touche 1 personne sur 500 en France, est associé à une dysbiose fongique intestinale3.

Pour mieux comprendre ce phénomène, l’équipe de recherche a analysé plusieurs échantillons biologiques appartenant à des sujets sains et à des patients présentant un déficit en IgA. Des anticorps IgA interagissant avec de très divers représentants du mycobiote ont été retrouvés dans le sérum de 31 sujets sains, mais également dans leurs sécrétions digestives et dans le lait maternel (n=20). En comparant ensuite des échantillons fécaux de 28 sujets sains et 12 patients atteints de déficit en IgA, l’équipe de recherche a montré que la présence de  l’IgA est associée à une préservation de la diversité du mycobiote intestinal. A l’inverse, C. albicans est plus représentée dans le mycobiote intestinal des patients qui présentent un déficit en IgA. Par ailleurs, des expériences in vitro suggèrent que la présence de cette immunoglobuline diminue le risque de translocation fongique à travers les cellules épithéliales de l’intestin.

L’équipe a ensuite cherché à déterminer pourquoi les sujets qui présentent un déficit en IgA ne souffrent habituellement pas d’infections fongiques sévères. L’étude a ainsi montré que l’absence d’IgA peut être partiellement compensée par d’autres acteurs comme les anticorps IgM et les lymphocytes Th17.
Cette redondance immunitaire a toutefois des limites puisque les formes symptomatiques de déficit en IgA, associés par exemple à des troubles digestifs, des infections ou des manifestations auto immunes sont également associées à une surreprésentation de C. albicans au niveau digestif.

En conclusion, l’IgA joue un rôle particulier pour la préservation de l’homéostasie du mycobiote intestinal, et plus précisément dans le contrôle de C. albicans. Ce résultat souligne l’intérêt de persister vers la mise en place de stratégies de supplémentation orale par IgA chez les patients déficitaires pour escompter un effet régulateur, non seulement sur les bactéries et les virus, mais également sur les champignons.

 

[1] anticorps produites par les plasmocytes du tissu conjonctif des muqueuses et les plasmocytes entourant les canaux excréteurs des glandes exocrines

[2] qui vivent sur la peau ou les muqueuses

[3] déséquilibre de la flore fongique intestinale

 

   DOCUMENT        inserm        LIEN

 
 
 
 

Une nouvelle canalopathie crbrale associant dficience intellectuelle et mouvements anormaux

 

 

 

 

 

 

 

Une nouvelle canalopathie cérébrale associant déficience intellectuelle et mouvements anormaux

27 NOV 2020 | PAR INSERM (SALLE DE PRESSE) | NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE


Les dysfonctionnements des canaux ioniques – ou canalopathies – dans le cerveau sont aujourd’hui associés à plus de 30 maladies neurologiques comme l’épilepsie ou encore les ataxies cérébelleuses. Structures situées sur la membrane des cellules permettant le passage d’ions (par exemple les ions sodium et potassium) entre l’intérieur d’une cellule et son environnement extérieur (milieu extracellulaire), ces canaux permettent notamment de générer et contrôler les potentiels d’action dans les neurones. Une étude menée à l’Institut du cerveau (Sorbonne Université/Inserm/AP-HP/CNRS) a permis d’identifier une nouvelle canalopathie cérébrale ayant pour origine des mutations dominantes du gène KCNN2, codant pour le canal ionique SK2. Les résultats ont été publiés dans Brain le 27 novembre 2020.

 
Les variants pathogéniques du gène KCNN2 identifiés chez les patients et leur localisation sur la structure protéique du canal SK2.

Les variant en rouge sont des variants pathogènes tronquant (introduisant un codon stop dans la séquence protéique). Les variants en noirs sont les variants pathogènes faux-sens associés à une perte de fonction. Le variant en gris a été classé de signification inconnue car le canal avec ce variant n’a pas montré de déficit particulier en électrophysiologie.


Le Dr Fanny Mochel, généticienne au sein du département de génétique de l’hôpital de la Pitié-Salpêtrière AP-HP et chercheuse à l’Institut du cerveau (Sorbonne Université/Inserm/AP-HP/CNRS) et le Pr Christel Depienne, généticienne à l’institut de génétique humaine de l’Hôpital Universitaire d’Essen (Allemagne) et également chercheuse à l’Institut du cerveau ont identifié un nouveau syndrome associé à des mutations du canal SK2. L’étude publiée dans la revue scientifique Brain porte sur 10 patients, 6 hommes et 4 femmes âgés de 2 à 60 ans présentant des retards intellectuels plus ou moins sévères associés, pour certains, à des troubles du spectre autistique ou des épisodes psychotiques. Ces troubles cognitifs sont dans tous les cas associés à des tremblements, à des symptômes d’ataxie cérébelleuse ou encore à des mouvements anormaux.

Grâce à une collaboration avec Agnès Rastetter de la plateforme de génotypage/séquençage de l’Institut du cerveau (Sorbonne Université/Inserm/AP-HP/CNRS), le génome d’un premier patient recruté à la Pitié-Salpêtrière a été analysé à la recherche de mutations génétiques à l’origine de ce syndrome. Cette analyse a mis en évidence une mutation du gène KCNN2 interrompant sa séquence codante, absente des parents du patient (mutation de novo). L’imagerie cérébrale par IRM (imagerie par résonance magnétique) chez ce patient a mis en évidence des anomalies de structure et d’intégrité de la substance blanche du cerveau, c’est-à-dire la gaine cérébrale protectrice des axones des neurones.

Par ailleurs, une collaboration internationale a permis aux chercheurs d’identifier 9 autres patients avec mutations du gène KCNN2. La majorité de ces mutations étaient survenues de novo tandis qu’une mutation était transmise dans une forme familiale du même syndrome.

Enfin, en travaillant conjointement avec Carine Dalle de la plateforme d’exploration cellulaire d’électrophysiologie de l’Institut du cerveau, les équipes des Dr Mochel et Depienne ont montré un rôle délétère de ces mutations sur la fonction du canal SK2, c’est-à-dire une perte de fonction entrainant un dysfonctionnement du canal ionique SK2 et donc une perte de régulation du potentiel d’action, support du message nerveux.

Les résultats de cette nouvelle étude ont permis d’identifier une nouvelle canalopathie cérébrale ayant pour origine des mutations dominantes du gène KCNN2, codant pour le canal ionique SK2. Ce nouveau syndrome se caractérise par la présence, d’une part, de symptômes cognitifs, en particulier une déficience intellectuelle et, d’autre part, de symptômes moteurs tels que des mouvements anormaux.

Cette nouvelle pathologie, dont on connaît maintenant la cause, est très hétérogène d’un point de vue des symptômes et nécessite une prise en charge multidisciplinaire à la frontière entre la génétique, pour la recherche des mutations du gène KCNN2, la neuropédiatrie et la neurologie pour la prise en charge des manifestations cognitives et motrices des patients.

 

  DOCUMENT        inserm        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ] - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google