ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

SAUVER LES ABEILLES ...

 

La Maison Blanche dévoile un plan pour sauver les abeilles

Le gouvernement américain a dévoilé mardi 19 mai 2015 un plan d'action national pour sauver les abeilles et autres pollinisateurs en péril.

RECOLTES. "Les insectes pollinisateurs sont essentiels pour l'économie nationale, la sécurité alimentaire et l'environnement", a expliqué John Holdren, l'un des principaux conseillers scientifiques du président Barack Obama. "La pollinisation par les seules abeilles représente plus de 15 milliards de dollars de récoltes agricoles annuellement" dans le pays, a-t-il précisé. Il s'agit de fruits, de fruits à coque et de légumes. Mais "ces pollinisateurs souffrent". En effet, selon une estimation du département de l'Agriculture (USDA) publiée la semaine dernière, les apiculteurs ont perdu 42% de leurs colonies d'abeilles ces douze derniers mois dont une grande partie en hiver.



Une pensée pour les monarques
C'est la deuxième plus mauvaise année pour la mortalité des abeilles domestiques aux Etats-Unis dans les annales. La pire avait été en 2012-2013 avec la disparition de 45% des colonies. "Des pertes aussi importantes toute l'année restent très inquiétantes", avait dit Jeff Pettis, un entomologiste de l'USDA, co-auteur de cette recherche. "Les chercheurs doivent trouver de meilleures réponses à l'origine des événements qui mènent à ces pertes en hiver comme en été". Ce phénomène encore mystérieux observé depuis 2006 en Amérique du Nord, mais aussi en Europe notamment, décrit la disparition assez soudaine dans les ruches de millions d'abeilles adultes.
Pour les scientifiques, une combinaison de plusieurs facteurs serait responsable de cette hécatombe, dont une mite parasite, un virus, la diminution des éléments nutritifs disponibles et la nocivité des pesticides. Le plan d'action américain vise aussi à reconstituer les populations de papillons monarques, en très forte diminution. Le nombre de ces papillons migrateurs, qui vont passer l'hiver dans le sud, surtout au Mexique, a baissé de 90%, voire davantage ces deux dernières décennies.
Restaurer la biodiversité végétale La Maison Blanche dévoile un plan pour sauver les abeilles

Le gouvernement américain a dévoilé mardi 19 mai 2015 un plan d'action national pour sauver les abeilles et autres pollinisateurs en péril.

Les apiculteurs américains déplorent 42% de perte parmi leurs abeilles. © Paul J. Richards/AFP

RECOLTES. "Les insectes pollinisateurs sont essentiels pour l'économie nationale, la sécurité alimentaire et l'environnement", a expliqué John Holdren, l'un des principaux conseillers scientifiques du président Barack Obama. "La pollinisation par les seules abeilles représente plus de 15 milliards de dollars de récoltes agricoles annuellement" dans le pays, a-t-il précisé. Il s'agit de fruits, de fruits à coque et de légumes. Mais "ces pollinisateurs souffrent". En effet, selon une estimation du département de l'Agriculture (USDA) publiée la semaine dernière, les apiculteurs ont perdu 42% de leurs colonies d'abeilles ces douze derniers mois dont une grande partie en hiver.

LIRE  Contre les pesticides : Obama au secours des abeilles

Une pensée pour les monarques
C'est la deuxième plus mauvaise année pour la mortalité des abeilles domestiques aux Etats-Unis dans les annales. La pire avait été en 2012-2013 avec la disparition de 45% des colonies. "Des pertes aussi importantes toute l'année restent très inquiétantes", avait dit Jeff Pettis, un entomologiste de l'USDA, co-auteur de cette recherche. "Les chercheurs doivent trouver de meilleures réponses à l'origine des événements qui mènent à ces pertes en hiver comme en été". Ce phénomène encore mystérieux observé depuis 2006 en Amérique du Nord, mais aussi en Europe notamment, décrit la disparition assez soudaine dans les ruches de millions d'abeilles adultes.
Pour les scientifiques, une combinaison de plusieurs facteurs serait responsable de cette hécatombe, dont une mite parasite, un virus, la diminution des éléments nutritifs disponibles et la nocivité des pesticides. Le plan d'action américain vise aussi à reconstituer les populations de papillons monarques, en très forte diminution. Le nombre de ces papillons migrateurs, qui vont passer l'hiver dans le sud, surtout au Mexique, a baissé de 90%, voire davantage ces deux dernières décennies.
Restaurer la biodiversité végétale
Ce plan prévoit de limiter la mortalité des colonies d'abeilles pendant l'hiver à 15% maximum dans les dix ans et à restaurer 2,8 millions d'hectares d'habitat dans les cinq ans grâce à des interventions fédérales et des partenariats entre secteurs public et privé. Il compte également accroître la population des papillons monarques jusqu'à 225 millions d'ici cinq ans sur une superficie de forêt d'environ six hectares au Mexique, en collaboration avec le gouvernement mexicain. De nombreuses agences fédérales sont mobilisées pour diversifier les espèces de plantes sur les terres fédérales, pour qu'elles soient mieux adaptées aux besoins nutritifs des abeilles et autres pollinisateurs. Selon les scientifiques, les vastes régions agricoles pratiquant la monoculture privent les abeilles de leurs sources de nourriture.
MOBILISATION. Ce plan qui met aussi l'accent sur la recherche scientifique, repose sur une stratégie "de mobilisation de toutes les ressources", faisant appel à tout un chacun, du fonctionnaire fédéral au simple citoyen, pour agir et sauver les abeilles, explique la Maison Blanche. Ces mesures sont l'aboutissement de l'appel lancé en juin 2014 par le président Obama pour mettre en oeuvre une stratégie fédérale. "Accroître l'étendue et la qualité de l'habitat des pollinisateurs est une partie importante de cet effort allant du développement de jardins près des immeubles fédéraux à la restauration de millions d'hectares de terres domaniales et privées", a précisé la présidence. Mais la Maison Blanche s'est montrée mesurée sur l'impact des insecticides: "Les pesticides jouent un rôle clé dans la production agricole et la santé de notre société. Atténuer leurs effets sur les abeilles est une priorité du gouvernement fédéral", indique le document.
MORATOIRE. En avril, l'Agence de protection de l'environnement (EPA) a établi un moratoire sur l'utilisation de certains pesticides (néonicotinoïdes) jusqu'à une évaluation complète des risques. L'Union européenne a interdit trois grandes classes de ces pesticides accusés de tuer les abeilles. Tout en se félicitant de ce plan, les organisations de défense de la nature aux Etats-Unis estiment que l'administration Obama ne va pas assez loin, surtout pour réduire l'usage des pesticides. "Le président a raison d'insister sur l'urgence de ce problème. Ces recommandations sont un bon premier pas pour sauver les abeilles, mais davantage d'actions plus urgentes sont nécessaires", juge Peter Lehner, directeur du Natural Resources Defense Council, qui appelle à une réduction drastique de l'usage des pesticides.
Ce plan prévoit de limiter la mortalité des colonies d'abeilles pendant l'hiver à 15% maximum dans les dix ans et à restaurer 2,8 millions d'hectares d'habitat dans les cinq ans grâce à des interventions fédérales et des partenariats entre secteurs public et privé. Il compte également accroître la population des papillons monarques jusqu'à 225 millions d'ici cinq ans sur une superficie de forêt d'environ six hectares au Mexique, en collaboration avec le gouvernement mexicain. De nombreuses agences fédérales sont mobilisées pour diversifier les espèces de plantes sur les terres fédérales, pour qu'elles soient mieux adaptées aux besoins nutritifs des abeilles et autres pollinisateurs. Selon les scientifiques, les vastes régions agricoles pratiquant la monoculture privent les abeilles de leurs sources de nourriture.
MOBILISATION. Ce plan qui met aussi l'accent sur la recherche scientifique, repose sur une stratégie "de mobilisation de toutes les ressources", faisant appel à tout un chacun, du fonctionnaire fédéral au simple citoyen, pour agir et sauver les abeilles, explique la Maison Blanche. Ces mesures sont l'aboutissement de l'appel lancé en juin 2014 par le président Obama pour mettre en oeuvre une stratégie fédérale. "Accroître l'étendue et la qualité de l'habitat des pollinisateurs est une partie importante de cet effort allant du développement de jardins près des immeubles fédéraux à la restauration de millions d'hectares de terres domaniales et privées", a précisé la présidence. Mais la Maison Blanche s'est montrée mesurée sur l'impact des insecticides: "Les pesticides jouent un rôle clé dans la production agricole et la santé de notre société. Atténuer leurs effets sur les abeilles est une priorité du gouvernement fédéral", indique le document.
MORATOIRE. En avril, l'Agence de protection de l'environnement (EPA) a établi un moratoire sur l'utilisation de certains pesticides (néonicotinoïdes) jusqu'à une évaluation complète des risques. L'Union européenne a interdit trois grandes classes de ces pesticides accusés de tuer les abeilles. Tout en se félicitant de ce plan, les organisations de défense de la nature aux Etats-Unis estiment que l'administration Obama ne va pas assez loin, surtout pour réduire l'usage des pesticides. "Le président a raison d'insister sur l'urgence de ce problème. Ces recommandations sont un bon premier pas pour sauver les abeilles, mais davantage d'actions plus urgentes sont nécessaires", juge Peter Lehner, directeur du Natural Resources Defense Council, qui appelle à une réduction drastique de l'usage des pesticides.

 

 DOCUMENT        sciencesetavenir.fr      LIEN

 
 
 
 

ÉVOLUTION ET GÉNÉTIQUE

 


Pierre-Henri Gouyon : "Chaque forme vivante est enthousiasmante"

L'éminent spécialiste de l'évolution, de la génétique et de la biodiversité, professeur à AgroParisTech, célèbre le génie des animaux. En avouant une tendresse particulière... pour les fourmis !

ÉVOLUTION. Des fourmis menacées par la montée d’une rivière qui s’assemblent en un radeau vivant pour sauver leur reine ; des fauvettes capables de prévoir la survenue d’un ouragan ; des dauphins fomentant des alliances à plusieurs niveaux pour rapter des femelles ; des éléphants qui enfouissent leurs morts sous des branchages en un rituel funéraire … Tous ces comportements qui vont de l’intelligence collective à l’empathie, en passant par l’inventivité et l’innovation, sont le fruit d’un seul et même processus : celui de l’évolution. C’est ce que nous explique, en introduction de notre hors-série consacré au « Génie des animaux » (disponible à l'achat en version électronique via l'encadré en bas de page), Pierre-Henri Gouyon, éminent et populaire spécialiste de l’évolution, de la génétique et de la biodiversité. La courte vidéo présentée ci-dessous a été tournée dans le cadre de cet entretien.



Professeur au Muséum d’Histoire naturelle, mais aussi à AgroParis Tech, à Sciences Po et à l’Ecole normale supérieure, il est l’homme qui, selon ses propre mots, "a réintroduit l’enseignement de la biologie évolutive en France après une éclipse de près de deux siècles" (voir le portrait de notre journaliste Rachel Mulot dans Sciences et Avenir mensuel d’octobre 2013, reproduit en bas de page). Un passeur idéal, chaleureux et stimulant, qui ne cesse, aujourd’hui encore, de s’étonner de l’incroyable « intelligence » du mécanisme découvert par Darwin dont, dit-il, "l’espèce humaine, dans son infini manque de modestie, n’arrive pas à accepter l’efficacité". Simplissime, puisqu’il s’agit de laisser les choses varier au hasard, de trier a posteriori ce qui a marché et de recommencer, ce mécanisme aboutit pourtant à cette incroyable complexité que nous explorons dans notre édition du printemps 2015.
"L’enseignement des SVT à l’école primaire est insensé"
Voici un extrait de l'entretien accordé par Pierre-Henri Guyon à Dominique Leglu (directrice de la rédaction de Sciences et Avenir) et Aline Kiner (rédactrice en chef du hors-série) :
"Le biologiste Theodosius Dobjansky a eu un jour cette formule : 'Rien en biologie n’a de sens si ce n’est à la lumière de l’évolution'. De ce point de vue l’enseignement des SVT à l’école primaire est insensé – au sens où il n’a pas de sens. On y définit les espèces comme différentes formes vivantes qui ne se reproduisent pas entre elles. Et point barre ! Comme si elles avaient été créées. Puis un beau jour, en 3e, les élèves entendent parler d’évolution. Et s’ils ont de la chance, avant la terminale, on leur expliquera la sélection naturelle. On me dit qu’il s’agit de respecter un ordre historique. Dans ce cas, enseignons aux élèves que la Terre est plate… jusqu’en 3e où on leur apprendra qu’elle est ronde !
On devrait plutôt commencer, en primaire, par expliquer que le monde vivant s’est constitué à partir d’une multitude de petits éléments, puis s’est organisé, complexifié, avec des bactéries, des archées et des eucaryotes qui ont donné d’un côté des animaux et des champignons, de l’autre des plantes et des algues. À partir de là, on peut introduire la notion d’espèce en disant que, dans cette immense arborescence, il y a des rameaux auxquels on donne des noms : règnes pour les grandes branches, puis classes, genres, familles et espèces. Si on expliquait dès le départ aux gamins que la vie a évolué, qu’elle évolue encore, qu’il y a des phénomènes qui permettent de créer de la nouveauté tout le temps… ils auraient une vision du monde vivant tout autre".


 DOCUMENT        sciencesetavenir.fr      LIEN

 
 
 
 

L'ÉVOLUTION DES ANIMAUX

 

Texte de la 432e conférence de l'Université de tous les savoirs donnée le 11 juillet 2002


Guillaume Balavoine, « Le complexe Hox et l'évolution des animaux »
L'idée que les modifications que subissent les espèces au cours de l'évolution sont causées par des altérations du développement de l'embryon est apparue dès le XIXe siècle. Néanmoins, l'ignorance dans laquelle nous étions des mécanismes fondamentaux de l'embryogenèse, c'est-à-dire le développement progressif d'un animal juvénile composé de milliers de cellules, de tissus différenciés et d'organes complexes à partir d'une seule cellule, l'oeuf fécondé, a empêché jusqu'à une date récente toute avancée significative dans le domaine des mécanismes embryologiques de l'évolution. Cette situation a radicalement changé depuis une trentaine d'années. Des progrès considérables ont été faits dans la compréhension de la façon dont les gènes contrôlent le développement de l'embryon. Pour la première fois, des exemples convaincants du rôle possible de certains gènes dans l'évolution de la morphologie des animaux ont été proposés.
Au cours de mon exposé, je souhaite donner un aperçu historique de la relation entre embryologie et évolution. J'essaierai d'expliquer à quel point la découverte des gènes homéotiques et de leur conservation chez la plupart des animaux a été révolutionnaire pour la biologie du développement. Dans une troisième partie, j'expliquerai comment certains de ces gènes peuvent avoir été impliqué dans l'évolution du plan d'organisation des animaux.
Evolution, embryologie et génétique
La première synthèse de l'embryologie et de l'évolution est celle de Ernst Haeckel (1834-1919), le grand naturaliste allemand. Depuis longtemps, les naturalistes avaient constaté que des animaux très dissemblables au stade adulte comme les mammifères et les poissons peuvent avoir des embryons très comparables aux stades précoces (le fameux stade « pharyngula »). Des interprétations pré-évolutionnistes ont éte proposées par Serres et par Meckel, mais la synthèse la plus connue était celle de von Baer (1792-1876). Les lois de von Baer mettent en exergue que l'embryogenèse dans un groupe donné fait d'abord apparaître les caractères les plus généraux, puis les caractères spécifiques, suivant une séquence temporelle stricte. Von Baer, qui était "fixiste" (il ne croyait pas à l'évolution des formes vivantes) voyait donc les différents groupes d'animaux comme autant de lignées séparées, ayant en commun les caractères généraux apparaissant tout au début de l'embryogenèse, et se différenciant par des caractères apparaissant plus tardivement dans le développement.
Haeckel voyait au contraire dans l'ontogénie une image exacte de la façon dont les animaux ont évolué, une conception énoncée en français par le fameux aphorisme : « l'ontogenèse récapitule la phylogenèse ». Selon Haeckel, les caractères nouveaux acquis par les organismes adultes au cours de l'évolution sont originellement des additions terminales au processus de leur développement. Par la suite, d'autres caractères peuvent encore être ajoutés en séquence, mais les caractères acquis auparavant sont retenus dans l'embryogenèse en apparaissant plus tôt. L'embryogenèse récapitule donc les formes adultes des espèces ancestrales. Un exemple bien connu est celui des fentes pharyngiennes qui apparaissent transitoirement chez les embryons des mammifères et qui selon l'hypothèse d'Haeckel sont le vestige des fentes portant les branchies chez les ancêtres « poissons » des mammifères. Haeckel reconnaît des exceptions à cette règle pourtant, c'est-à-dire des caractères qui n'apparaissent pas dans l'ontogénie à un stade qui correspond à celui de leur acquisition au cours de la phylogenèse. Mais le grand oeuvre du biologiste évolutionniste doit justement consister à retrouver dans l'embryogenèse les indices véritables de l'histoire des êtres. En appliquant systématiquement ces principes à la reconstitution de cette histoire des êtres vivants, Ernst Haeckel fut le premier à dessiner les arbres généalogiques (ou « phylogénétique ») représentant leurs parentés.
Gradualisme darwinien contre mutationnisme
Haeckel était un partisan enthousiaste des idées de Charles Darwin (1809-1882). Darwin proposa en 1859 dans l'Origine des espèces une théorie révolutionnaire de l'évolution des formes vivantes par la sélection naturelle. Le fondement de cette théorie est qu'il existe à tout moment dans la population naturelle de n'importe quelle espèce des variations infimes de la forme et de la taille des organes. Ces variations apparemment insignifiantes ont néanmoins la caractéristique d'être héréditaires. Certaines de ces variations se révèlent désavantageuses pour la survie dans son milieu de l'individu qui les porte mais d'autres sont bénéfiques. Comme la reproduction produit bien plus d'individus qu'il n'en peut survivre (la fameuse "lutte pour la vie"), les individus porteurs d'une variation bénéfique sont plus susceptibles d'attendre l'age de la reproduction que les autres et vont plus que les autres transmettrent ces avantages à leur descendance, entraînant l'expansion de la variation au sein de la population de l'espèce. Comme pendant ce temps, de nouvelles variations apparaissent, de proche en proche, par l'accumulation sur de très longues périodes de temps (Darwin parlait de millions d'années) d'infimes variations, des modifications très substantielles de l'anatomie de l'espèce peuvent se produire. Darwin ne connaissait pas l'origine des variations héréditaires qu'il constatait dans les populations naturelles et il ne savait pas par quel mécanisme ces variations étaient transmises à la descendance.
On le voit, le développement ne joue pas un grand rôle dans la théorie de Darwin. Haeckel a donc essayé de concilier le darwinisme avec sa propre théorie d'évolution des formes vivantes par modification du développement. Haeckel avait ses propres idées sur la transmission héréditaire des variations, fondée sur ce qu'il est convenu d'appeler l'hérédité des caractères acquis, mais cette théorie s'effondra avec la découverte du gène.
Ironiquement, les gènes étaient découverts par un moine morave, Gregor Mendel (1822-1884), à l'époque même où Darwin faisait publier l'Origine des espèces. Mendel travaillait sur une plante, le petit pois, et sur de petites variations de pigmentation ou de texture des téguments des graines de cette plante. Ces variations étaient semblables à celles dont parlait Darwin dans l'Origine des espèces. Mais pendant plus de trente ans, les travaux de Mendel n'ont reçu aucun écho.
L'une des premières conséquences de la redécouverte du gène vers la fin du dix-neuvième siècle a été un rejet par les premiers généticiens de l'évolution « darwinienne » (c'est-à-dire du rôle prépondérant de la sélection naturelle dans l'apparition des caractères nouveaux) comme cause principale de l'évolution anatomique. L'un des ré-inventeurs de la génétique, le hollandais Hugo de Vries (1848-1935), distinguait deux sortes de variations dans les populations naturelles : les variations continues minimes sur lesquelles Darwin fondait sa théorie, mais qui ne pouvaient, selon de Vries, en aucun cas permettre l'évolution et les variations discontinues et brutales (qu'il appela des « mutations ») qui, seules, pouvaient produire de nouvelles espèces. Le rôle de la sélection était, sinon rejetée, du moins limitée à l'émondage des espèces par trop inadaptées. Pour de Vries, l'évolution procède donc par sauts, une mutation pouvant faire apparaître soudainement une nouvelle espèce.
Bateson et les transformations homéotiques
Parmi les tenants de cette école saltationniste, on trouve William Bateson (1861-1926), zoologiste anglais. Bateson était persuadé que les mécanismes évolutifs qui produisent de nouvelles espèces sont discontinus et interviennent par des variations anatomiques brutales. Dans Materials for the study of variation (1894), il fournit un recueil considérable d'exemples de ces variations discontinues. Certaines de ces variations se caractérisent par le fait qu'une certaine partie du corps d'un organisme prenait l'apparence d'une autre partie. Par exemple, chez les insectes, les antennes peuvent être remplacée par des pattes ; chez les crustacés, les yeux peuvent devenir des antennes ; chez diverses plantes, les pétales de la fleur peuvent prendre la forme d'étamines. Bateson fournit une longue liste de ce type de transformations parmi des groupes aussi variés que les vers annelés, les insectes et les mammifères. Il inventa le terme « homéose » pour désigner ces transformations. Bateson s'intéressa à l'origine de la variation et s'enthousiasma pour la théorie génétique de l'hérédité. Cette théorie lui semblait tout à fait confirmer ses idées quant à l'apparition soudaine de nouvelles espèces. Néanmoins, pendant les décennies qui suivent, ces idées ne font guère école. Les généticiens s'intéressent essentiellement à des modifications assez minimes de la morphologie pour expliquer l'évolution des caractères. Les « monstres » issus de mutations telles que les transformations homéotiques intervenant au cours du développement précoce les intéressent fort peu.
Les mutants homéotiques de la drosophile
Il faudra attendre Edward Lewis (né en 1918, prix Nobel 1995 de médecine), un généticien américain, pour que l'origine génétique des transformations homéotiques soient analysées en profondeur. Edward Lewis a travaillé toute sa vie sur les gènes homéotiques de la mouche fétiche des généticiens, la drosophile.
Le corps d'une mouche (tête, thorax et abdomen) est formé de segments d'anatomies différentes mais qui apparaissent identiques au début de leur développement. Sous l'effet d'une mutation d'un gène homéotique, un ou plusieurs segments vont au cours du développement prendre l'apparence d'autres segments. L'exemple le mieux connu est celui de la mutation bithorax. Les mouches porteuses de cette mutation ont deux paires d'ailes et semblent avoir deux thorax. Chez les mouches (diptères), le deuxième segment thoracique (T2) est très développé et porte une paire de pattes et une paire d'ailes alors que le troisième segment thoracique (T3) est de taille réduite et porte juste une paire de pattes mais pas d'ailes. Chez le mutant bithorax, T3 ressemble trait pour trait à T2, c'est-à-dire que la taille du segment est considérablement augmentée et qu'il porte des ailes (fig 1).
Edward Lewis a consacré une bonne partie de sa carrière à l'étude de ces gènes et dans une publication en 1978, il a contribué à démontrer deux aspects fondamentaux de leur structure et de leur fonction (fig 2) :
- les gènes homéotiques sont regroupés en deux complexes sur un chromosome de la mouche, le complexe Antennapedia qui compte cinq gènes contrôlant la forme des segments de la tête et du thorax, et le complexe Bithorax avec trois gènes s'occupant du thorax et de l'abdomen. Lewis en a déduit que les gènes homéotiques étaient des gènes apparentés apparus par des duplications successives dites « en tandem » d'un seul gène ancestral.
- Ces gènes régulent l'identité des segments de la mouche le long de l'axe antéro-postérieur suivant un ordre identique à celui dans lequel on les trouve sur le chromosome. C'est ce que l'on appelle la propriété de colinéarité.
Edward Lewis pensait à cette époque que les gènes homéotiques étaient une particularité des arthropodes (les animaux articulés) et qu'ils avaient joué un grand rôle dans leur évolution. On considérait à l'époque que les insectes avaient évolué à partir d'ancêtres chez lesquels tous les segments du tronc sont identiques, comme chez les milles-pattes actuels. Cette anatomie aurait été contrôlée par un gène homéotique ancestral unique. Puis d'autres gènes, ceux du complexe Bithorax seraient apparus par des duplications du gène ancestral. Mais ces nouveaux gènes auraient acquis une nouvelle fonction, celle de gènes « suppresseurs » de « pattes » L'apparition de ces gènes aurait donc provoqué l'apparition de l'abdomen sans patte et donc des insectes (fig 3).
Les années qui suivirent, qui virent l'application systématique des nouvelles techniques de biologie moléculaire à l'analyse des gènes des deux complexes donnèrent souvent raison aux idées visionnaires de Lewis sauf sur un point important : les gènes étaient beaucoup plus anciens qu'il ne le pensait.
L'homéodomaine ou la pierre de Rosette de la biologie du développement.
Dans les années 1980, plusieurs laboratoires ont élucidé la nature et la fonction moléculaire des gènes homéotiques. Les gènes sont des fragments d'ADN sur le chromosome composé d'un enchaînement spécifique de nucléotides (les quatre fameuses bases A,T,G,C). Ces enchaînements codent la structure d'une protéine, laquelle peut avoir diverses fonctions (protéines contractiles comme dans les cellules musculaires, enzymes du métabolisme, etc ...). Quand un gène, à un moment donné du développement et dans des cellules données, est effectivement « traduit » dans la protéine qu'il code, on dit que le gène s'« exprime ». Les gènes homéotiques codent pour des protéines régulatrices de l'expression d'autres gènes, c'est-à-dire que dans les cellules où le gène homéotique s'exprime, une protéine homéotique est produite qui va à son tour réguler positivement ou négativement l'expression de plusieurs autres gènes.
Les gènes homéotiques sont responsables de l'identité des segments de la drosophile au cours du développement, c'est-à-dire qu'ils vont aiguiller le développement des cellules de ces segments vers une direction spécifique. C'est pourquoi ces gènes ont été désignés sous l'appellation de gènes « sélecteurs» : ils fixent la destinée des cellules embryonnaires dans lesquelles ils sont exprimés, c'est-à-dire dans lesquelles la protéine qu'ils codent est produite. On peut grâce à des méthodes moléculaires sophistiquées mettre en évidence l'expression du gène dans des segments spécifiques (fig 4).
Le séquençage des gènes homéotiques fut effectué dans plusieurs laboratoires, notamment celui de Walter Gehring en Suisse et celui de Thomas Kaufman aux Etats-Unis. Comme Lewis l'avait prévu, les gènes homéotiques sont bien des gènes apparentés. Ils ont tous en commun un motif conservé, lequel code pour une partie de la protéine que l'on a appelé l'« homéodomaine ». C'est grâce à cet homéodomaine que les protéines homéotiques peuvent se fixer sur le chromosome à des endroits spécifiques et réguler d'autres gènes se trouvant à proximité, les gènes « effecteurs » qui vont réaliser la « forme » finale du segment en agissant sur la différenciation des cellules de ce segment.
Les études menées sur la drosophile ont donc révélé des concepts entièrement nouveaux pour la biologie du développement. Les gènes homéotiques ont été les premiers gènes « sélecteurs » étudiés en détail mais on sait aujourd'hui que beaucoup d'autres gènes de ce type (des centaines) existent sur les chromosomes et qu'ils régulent de multiples aspects du développement.
Très rapidement, on s'aperçut que des gènes codant pour des protéines à homéodomaine très proches des gènes homéotiques de la drosophile étaient présents chez la plupart des animaux, en particulier chez les vertébrés. On appelle ces gènes les gènes « Hox » de façon générale. La voie était ouverte pour une vaste entreprise d'identification de gènes par homologie qui conduisit à la découverte des complexes de gènes Hox chez l'homme et la souris. La « Pierre de Rosette » de la biologie du développement était découverte.
Des complexes homologues chez les insectes et les vertébrés.
Les deux complexes homéotiques de la drosophile ANT-C et BX-C sont le résultat d'une scission d'un complexe ancestral unique. Cette organisation ancestrale en un seul complexe a été trouvée chez d'autres insectes. Les vertébrés ont quatre complexes de gènes Hox qui résultent manifestement de duplications d'un complexe ancestral entier. Les quatre complexes sont situés sur des chromosomes différents. Ils sont alignables entre eux, chaque gène ayant en général un proche parent chez chacun des trois autres complexes, dont l'homéodomaine est quasiment identique.
La plupart des gènes Hox des vertébrés sont alignables avec les gènes des complexes de la drosophile, sur la base de la comparaison des homéodomaines et de la position du gène au sein du complexe (figure 3). Ceci démontre que ces gènes ont été hérités d'un ancêtre commun aux deux organismes, un animal qui vivait il y a au moins 550 millions d'années. Le complexe Hox lui-même devait donc exister chez cet animal. Il a été possible d'étudier la fonction des gènes Hox chez les mammifères en prenant comme modèle la souris où il est possible d'obtenir artificiellement des mutants de ces gènes. Quand on détruit l'un des gènes de la souris, on obtient des souriceaux présentant des malformations qui sont des transformations homéotiques de la colonne vertébrale ou des côtes, c'est-à-dire que certaines vertèbres ou certaines côtes prennent l'aspect de vertèbres ou de côtes plus antérieures ou plus postérieures. On a donc des effets très comparables à ceux observés sur les segments de la drosophile.
On avait donc à l'époque entre les mains un premier exemple de conservation à très grande échelle d'une structure chromosomique complexe. Que cette structure soit constituée de gènes fondamentaux pour le développement, responsables d'une partie importante du plan d'organisation de l'animal, comme cela a été établi rapidement chez les vertébrés aussi, était complètement inattendu. Rien ne laissait penser en effet que les plans d'organisation d'un mammifère et d'un insecte avaient quoi que ce soit de comparable, hormis quelques grands traits de base (axe antéro-postérieur, présence d'une tête, etc...).
La comparaison structurelle et fonctionnelle des gènes Hox des insectes et des mammifères établissait donc de façon certaine que leur dernier ancêtre commun avait déjà un complexe Hox élaboré, que ce complexe jouait déjà un rôle dans la régionalisation antéro-postérieure de l'embryon.
L'évolution du complexe Hox au sein des animaux.
La ressemblance des complexes de la souris et de la drosophile est remarquable. Il y a néanmoins des différences importantes. D'abord, les quatre complexes semblables des mammifères suggèrent que chez un de leur ancêtre, le complexe ancestral a été dupliqué plusieurs fois pour donner les quatre copies. Ensuite, les mammifères ont beaucoup plus de gènes « postérieurs » (exprimés dans la partie postérieure de l'embryon) que les insectes (jusqu'à cinq contre un seul). Ces différences suggèrent que des changements assez importants se sont produits pendant l'histoire du complexe Hox.
Ces constatations ont amené certains chercheurs à se demander quelles ont été les grandes étapes de l'évolution du complexe, à quelle moment de l'histoire de la vie ce complexe est apparu et si cette apparition est corrélée avec une étape importante de l'évolution des formes vivantes. Une « chasse » au gène Hox a donc été menée chez toute une série d'organismes. Très vite, il est apparu que l'histoire des gènes Hox serait propre aux animaux. En effet, aucun gène proche du type Hox n'a été découvert chez les plantes, chez les champignons ou chez les bactéries.
Pour comprendre l'histoire du complexe Hox au sein des animaux, il faut avoir une idée assez précise de la généalogie des animaux. A l'époque où les gènes Hox furent identifiés, dans les années 1980, d'importants progrès restaient à faire dans ce domaine. Depuis Haeckel, les hypothèses sur la forme de l'arbre généalogique des animaux, basées sur la comparaison de leurs caractères anatomiques et embryologiques avaient abondées. Mais des conflits importants subsistaient entre les évolutionnistes. L'ère de la biologie moléculaire apporta un renouveau considérable à ce domaine car il devint possible d'utiliser les gènes pour établir les relations de parenté entre les êtres vivants. La comparaison de la structure de gènes homologues (c'est-à-dire hérité d'un ancêtre commun) entre plusieurs organismes permet d'obtenir ces informations. Tous les gènes sont constitués d'un enchaînement précis des quatre acides nucléiques constitutifs de l'ADN (A, T, G et C). Lorsqu'une espèce donne naissance à deux lignées distinctes au cours de l'évolution, de petites différences vont commencer à s'accumuler entre les gènes initialement identiques de ces deux lignées. En général, ces différences consistent en de simples remplacements, appelés substitutions, d'un acide nucléique par un autre. En première approximation, ces substitutions s'accumulent régulièrement en fonction du temps écoulé. Le principe de base de ce que l'on appelle la « phylogénie moléculaire » est donc simple : plus les structures des gènes comparés sont proches (moins on trouve de substitutions), plus les organismes concernés doivent être apparentés.
L'utilisation systématique de ces techniques sur plusieurs types de gènes a permis de voir émerger au cours des années 1990 la forme générale de l'arbre des animaux (fig 5). A la base de l'arbre émergent les éponges, les animaux les plus simples. Les éponges n'ont pas à proprement parler de tissus différenciés. Tous les autres animaux se regroupent par le fait qu'ils ont des tissus et des organes différenciés. A la base de ce nouveau groupe des « animaux à tissus », on distingue une autre branche qui est celle des polypes (anémones de mer, coraux) et méduses. Ces animaux ont été reconnus très tôt comme relativement plus simples que les autres animaux à tissus, car ils n'ont fondamentalement que deux feuillets cellulaires (un externe et un interne), n'ont pas de système nerveux condensé et pas non plus d'axe antéro-postérieur avec une tête et un tronc clairement différenciés. Tous les autres animaux semblent être regroupés dans un troisième ensemble que l'on appelle les « bilatériens ». Ce terme se réfère au fait que ces animaux ont une symétrie bilatérale (c'est-à-dire un côté gauche et un côté droit identique) mais ils ont en commun de nombreuses autres particularités. Ils ont un axe antéro-postérieur très différencié avec une tête et un tronc, un tube digestif et un système nerveux condensé avec un « cerveau » et une chaine nerveuse. Les recherches les plus récentes ont montré que ces animaux complexes, les bilatériens se divisent eux-mêmes en trois grands groupes illustrés sur la figure 5 mais ceci dépasse notre propos.
La recherche de gènes Hox chez les éponges a toujours été négative. Chez les polypes et méduses, un petit nombre de gènes apparentés aux gènes Hox a été identifié et quelques indices qu'ils sont groupés en complexe ont pu être obtenus. Chez pratiquement tous les groupes de bilatériens considérés (vertébrés, oursins, insectes, vers annelés, mollusques, etc ...), un complexe Hox élaboré comptant entre huit et quatorze gènes a été découvert. On voit donc se dessiner un scénario assez clair de l'histoire du complexe Hox. Les premiers gènes Hox seraient apparus chez un ancêtre des animaux à tissus après la divergence des éponges. A l'époque où la branche des polypes et méduses s'est séparée, le complexe Hox n'auraient compté que quelques gènes (peut-être trois). Par contre de nombreuses duplications de gènes se seraient produites chez les ancêtres des bilatériens. On peut imaginer que les grandes étapes de ce scénario correspondent à des étapes de la complexification au plan d'organisation des animaux. En gros, l'acquisition d'un axe de symétrie très simple comme celui des polypes et méduses serait corrélé à la présence d'un petit complexe de trois gènes. Par contre, l'apparition d'une régionalisation antéro-postérieure poussée comme chez les bilatériens aurait nécessité la présence d'un complexe beaucoup plus élaboré d'au moins huit ou dix gènes.
On le voit, l'existence du complexe Hox est bien plus ancienne que ce que Lewis avait imaginé. La multiplication du nombre des gènes que Lewis envisageait chez les arthropodes s'est en fait produite bien avant, chez les ancêtres des bilatériens. Pourtant, les bilateriens ont évolué pour donner une diversité époustouflante d'animaux. Est-ce à dire que le complexe Hox n'a pas été impliqué dans cette diversification, jouant simplement un rôle conservateur d'agent de régionalisation de l'axe antéro-postérieur ?
Les gènes Hox sont-ils responsables de l'évolution anatomique ?
Deux exemples concrets chez les arthropodes
Nous avons vu que l'évolution de la structure du complexe s'est faite bien avant ce que pensait initialement Edward Lewis au cours de l'histoire des animaux. Pourtant, dans la suite de cet exposé, nous allons retourner vers le groupe de prédilection de Lewis et de nombreux évolutionnistes depuis, c'est-à-dire les arthropodes. Les arthropodes, comme nous l'avons vu sont tous constitués de segments, initialement identiques au cours du développement mais qui se différencient par la suite sous l'action des gènes Hox. En comparant l'organisation anatomique des principaux groupes d'arthropodes, on s'aperçoit que leurs plans anatomiques diffèrent considérablement non seulement par la forme des segments mais aussi par la façon dont ils se regroupent le long du corps de l'animal (fig 6). Chez les myriapodes, le groupe le plus simplement organisé, tous les segments portent des pattes et ont à peu près la même forme d'un bout à l'autre. Dans les autres groupes, ils se regroupent en un thorax et un abdomen mais de façon très différentes. Chez les arachnides (araignées et autres scorpions), le thorax portant les pattes est fusionné avec la tête, alors que les segments de l'abdomen ne portent pas de pattes. Chez les crustacés, tous les segments portent généralement des pattes mais celles du thorax sont souvent très différentes de celles de l'abdomen. Chez les insectes, le thorax ne comporte que trois segments et là encore les segments abdominaux ne portent pas de pattes. Les gènes Hox sont ils responsables de ces différences ? Des chercheurs de plusieurs laboratoires ont entrepris des études à la fois sur la structure et le fonctionnement du complexe Hox chez ces grands groupes d'arthropodes. Les résultats ont été surprenants. Globalement, la structure du complexe Hox est très remarquablement conservatrice chez tous les arthropodes. On retrouve les mêmes gènes que ceux que nous avons décrits chez la drosophile chez chacune des espèces d'arthropodes considérés. Contrairement à ce que proposait Lewis, ce n'est donc pas une variation dans le nombre des gènes Hox qui explique l'évolution de l'anatomie des arthropodes. Qu'en est-il de la façon dont ces gènes s'expriment ? Nous avons que les gènes Hox, gènes sélecteurs, influent sur la destinée des cellules dans lesquels ils sont exprimés sous la forme d'une protéine. De la même façon que chez la drosophile, les divers gènes Hox des arthropodes considérés s'expriment dans des groupes de segments contigus, généralement de façon chevauchante et en respectant la règle de colinéarité. La correspondance globale des domaines d'expression suggère des correspondances entre l'anatomie segmentée des différents groupes. Ainsi, si on en croit les gènes Hox (mais aussi l'anatomie comparée plus traditionnelle), les segments du thorax d'une araignée correspondent à ceux de la tête chez les autres arthropodes. Tout ce passe comme si au cours de l'évolution soit les arachnides ont commencé à marcher sur leur tête, soit au contraire (et peut-être plus vraisemblablement) les autres groupes ont intégré à leur tête la partie la plus antérieure de leur tronc dont les pattes sont devenus des pièces buccales destinées à la mastication. Néanmoins, en comparant les gènes correspondant dans différents groupes d'arthropodes, on observe des différences parfois considérables. Le gène pb, par exemple s'exprime dans la plus grande partie du céphalothorax des arachnides (c'est-à-dire cinq segments consécutifs) alors qu'il n'est exprimé que dans un seul segment de la tête chez une espèce de crustacé. L'extension postérieure de l'expression des gènes les plus antérieurs est également variable. Est-il possible que de telles différences expliquent les différents plans d'organisation des arthropodes ? Ceci semble peu probable car il est difficile de relier ces différences individuelles avec des particularités anatomiques constatées. Une difficulté supplémentaire est que nous ne disposons pas chez ces arthropodes des collections de mutants de la drosophile et donc pas de moyen de savoir quelles sont réellement les fonctions de ces gènes.
Pourtant, dans un certain nombre de cas, les chercheurs ont trouvé des indices plus probants.
Le premier exemple concerne les crustacés (crabes, crevettes, etc ...). Les chercheurs Michalis Averof et Nipam Patel (fig 7) ont comparé l'expression du gène Ubx chez diverses espèces de crustacés. Ces espèces diffèrent par la forme et la fonction des pattes les plus antérieures portées par le thorax. Chez certaines espèces, ces pattes sont effectivement des organes locomoteurs mais chez d'autres espèces, elles sont devenues des pièces buccales avec une fonction masticatrice. Chez les embryons des premières, le gène Ubx est exprimé dans toutes les pattes. Par contre, chez les embryons des secondes, les ébauches des pattes les plus antérieures, celles qui vont devenir des pièces buccales, n'ont pas d'expression du gène Ubx. Tout ce passe donc comme si le gène Ubx jouait un rôle dans le maintien de l'identité de patte locomotrice. Son « retrait » des pattes les plus antérieures était donc nécessaire pour leur permettre de devenir des pièces masticatrices. Pour autant, nous ne pouvons pas affirmer que c'est ce retrait de Ubx des pattes antérieures qui a causé la transformation au cours de l'évolution. Peut-être d'autres gènes sont-ils intervenus.
Un autre exemple concerne un aspect en apparence beaucoup plus discret de l'évolution morphologique mais là aussi le gène Ubx (encore lui ...) semble jouer un rôle certain. Cet exemple a été découvert par le chercheur David Stern, chez plusieurs espèces très apparentées de mouches drosophile. Les mouches ont de fins poils sur les pattes mais pas partout. Certaines zones de la patte en sont exemptes et David Stern a mis en évidence que les cellules de ces zones expriment le gène Ubx pendant leur développement. Certaines espèces de mouches ont une zone sans poils très étendue sur leurs pattes alors que chez d'autres, elle est beaucoup plus réduite. David Stern a montré que le gène Ubx est directement responsable de ces différences. Lorsqu'il introduit le gène d'une mouche"glabre « dans une mouche poilue » par un simple croisement (de la même façon que l'on croise un âne avec une jument pour obtenir un mulet), il obtient une extension de la zone sans poils.
Conclusion
Ces deux exemples nous ramènent à notre propos du début : l'évolution est-elle saltationniste ou gradualiste ? Le premier exemple, avec la transformation de plusieurs pattes de façon très importante semble suggérer la possibilité d'une évolution saltationniste. Pourtant rien dans cet exemple ne démontre que cette transformation s'est faite brutalement sous l'effet d'une ou d'un très petit nombre de mutations. Le deuxième exemple concernant un infime détail de l'anatomie d'une patte se rattache beaucoup plus au gradualisme darwinien. Le débat entre saltationnisme et gradualisme est aujourd'hui largement estompé. La plupart des biologistes acceptent l'idée que l'évolution se fait bien de façon graduelle par l'accumulation de petites différences comme le suggérait Darwin. Une partie de l'intérêt suscité par les gènes homéotiques provenait de l'idée que ces gènes étaient susceptibles d'engendrer une évolution par saut. Aujourd'hui, les chercheurs sont beaucoup plus prudents sur cette idée. Mais, ironie de l'histoire, c'est cet engouement pour les gènes homéotiques qui a permis de réaliser une percée décisive dans la compréhension des mécanismes génétiques du développement.

 

 VIDEO       CANAL  U         LIEN


 ( si la vidéo n'est pas visible,inscrivez le titre dans le moteur de recherche de CANAL U )

 
 
 
 

MUTATION , ÉVOLUTION , ET SÉLECTION

 

Mutation, Evolution et Sélection.
Par Miroslav Radman

Texte de la 427e Conférence de l'Université de Tous les Savoirs donnée le 6 juillet 2002

De nouvelles perspectives d'application pour les sciences de l'évolution.
Depuis quelques années, la science de l'évolution, traditionnellement très théorique, abstraite, académique, donne lieu à de très grandes nouveautés expérimentales et a même des implications en biotechnologie et en biomédecine. On peut ainsi utiliser des méthodes directement inspirées de l'évolution naturelle pour faire évoluer des molécules d'intérêt industriel ou pharmaceutique. On est également aujourd'hui capable d'observer l'évolution de populations bactériennes en temps réel ou encore la dynamique des gènes dans des embryons. Dans une phrase célèbre, Dobzhansky explique que la biologie n'a de sens qu'à la lumière de l'évolution. L'idée est que le but unique de la vie c'est la vie elle-même, la survie et que la grande stratégie de la survie, c'est l'évolution. Nous aimerions donc apprendre de l'évolution cette stratégie, pour connaître mieux la vie mais aussi pour pouvoir mettre en place une évolution qui nous sera utile et bénéfique.

« Imperfection », efficacité et robustesse des stratégies évolutives.
Tout être vivant, de la bactérie jusqu'à l'homme doit, pour survivre, éviter de se faire manger de l'extérieur, par les prédateurs ; il doit également éviter de se faire manger de l'intérieur par les parasites, éviter de perdre la compétition avec ses congénères et, lorsqu'il a évité toutes ces sources de mort, développer une robustesse de l'organisme face à un environnement physique souvent très agressif. Cette robustesse constitue la clé de la survie à long terme. Les stratégies de l'évolution ont une origine moléculaire qui date de près de 4 milliards d'années. On trouve des séquences dans les génomes, des bactéries jusqu'à l'homme, qui sont des preuves très convaincantes d'une origine commune de tous les organismes vivants. En cherchant à savoir comment la simplicité originelle a pu donner naissance à des individus complexes comme l'homme, on ne trouvera toutefois pas la beauté, la perfection, la finesse que notre esprit pourrait être tenté d'anticiper mais plutôt l'efficacité.
Taux d'erreur lors de la synthèse de l'ADN, des ARN et des protéines.
Les protéines sont les macromolécules responsables de quasiment tout le travail cellulaire. Le taux d'erreur dans la synthèse des protéines est de l'ordre de 1-3 10-4. Dans l'espèce humaine, on a pu estimer expérimentalement que 30% des protéines sont dégradées après leur synthèse parce que le système de contrôle qualité les a détectées - à tort ou à raison - comme défectueuses. On imagine mal un tel taux d'erreur dans une chaîne de production automobile, mais on verra plus loin l'intérêt de cette imperfection naturelle. Le taux d'erreur dans la transcription synthèse d'ARN messager est cohérent avec ce taux d'erreur en aval dans la traduction, de l'ordre de 10-5. Le taux d'erreur dans la réplication de l'information génétique (copie d'ADN en ADN) est par contre de l'ordre de 10-10, ce qui en fait un processus 1 million de fois plus fidèle que la synthèse des protéines. On pourrait en fait faire mieux pour les protéines. Ainsi, les bactéries qui résistent à l'antibiotique streptomycine ont une mutation qui leur confère une fidélité plus haute dans la synthèse des protéines. Il y a cependant un coût à cette fidélité, ces bactéries poussant beaucoup moins vite. L'efficacité est donc privilégiée par rapport à la fidélité.

Stress prévisible et stress imprévisible.
Certains stress sont « prévisibles », par exemple, pour les bactéries, le choc osmotique, le choc thermique (chaud et froid), le choc oxydatif (créé par des macrophages, par exemple). Il y a dans le génome des bactéries des éléments de programme qui permettent de faire face à ces stress, qui ont été rencontrés à de nombreuses reprises au cours de l'histoire évolutive. Les bactéries qui ont survécu aux stress du passé sont aujourd'hui capables de détecter ces stress prévisibles : quand un stress prévisible apparaît, les bactéries activent un mécanisme de survie approprié. Le système d'évolution inductible, le système SOS est mis en action lorsque l'ADN ne peut pas se répliquer car il porte trop de lésions. Le système SOS déclenche la synthèse de polymérases peu fidèles qui sont capables de copier l'ADN défectueux et permettent de sortir du blocage initial, au prix de quelques mutations.
Pour survivre des milliards d'années, une adaptation à des stress imprévisibles est également nécessaire. Le futur est complètement imprévisible, surtout pour les bactéries. Du point de vue des stratégies moléculaires, à l'opposé des mécanismes très spécialisés, efficaces et fragiles (peu robustes) développés face au stress prévisible, les bactéries ont adopté des mécanismes généralistes, flexibles, qui permettent de faire face à l'incertitude inhérente au stress imprévisible. Concrètement, les bactéries créent alors de la diversité aveugle, gaspillent et payent ainsi une sorte d'assurance « tout risque ». On peut en déduire que dans ces conditions, s'il y a un « Grand Concepteur », ce n'est pas le concepteur des produits de l'évolution, c'est le concepteur de la méthode, de la stratégie de l'évolution. Le dernier retrait de Dieu !

Mutation, sélection et biodiversité.
La stratégie de base pour faire face à l'adversité inconnue, est représentée à la figure 1 Le schéma est général et s'applique à l'évolution des tumeurs, des bactéries, des immunoglobulines, des espèces. Dans une population de bactéries, avec un taux d'erreur de 10-10, une bactérie sur 300 environ porte une nouvelle mutation (le génome d'une bactérie typique fait environ 5 106 paires de bases). Normalement, lorsqu'on discute la biodiversité, il y a une connotation politiquement correcte, on respecte la biodiversité. Dans la vie, la biodiversité devient utile au moment où elle va être réduite à presque rien. Par exemple, si on part d'une population de un milliard de bactéries qui sont issues d'une seule bactérie et qu'on les frappe de sélection létale, avec un antibiotique comme l'ampicilline, si la population porte des mutations, un petit nombre de bactéries (1, 2 ... 10) résistantes seront sélectionnées parce qu'elles portaient par hasard une mutation qui leur confère la résistance à l'antibiotique et pourront survivre. Si on laisse pousser ces quelques bactéries, et qu'on frappe les milliards de bactéries qui en sont issues avec un autre antibiotique quelconque, une de ces bactéries aura, par hasard, reçu une mutation qui lui permettra de survivre et développé ainsi deux résistances. Les stratégies évolutives visent essentiellement à mettre en place des mécanismes adaptatifs de survie aux stress. Dans le cas des tumeurs, ce n'est pas une sélection létale, c'est plutôt une sélection compétitive (partie droite de la figure 1) : une cellule qui acquiert une mutation relâchant un des nombreux freins présents au cours du cycle cellulaire, se divise à chaque génération un peu plus vite que les autres et finit par s'imposer au sein de la tumeur. Ce type de sélection compétitive a aussi lieu chez les bactéries dans la nature, en l'absence d'antibiotiques. La biodiversité apparaît ainsi comme le substrat pour la sélection, les mutations sont comme une « assurance-Vie » qui permet de gagner la survie lorsque la population entière est frappée par une sélection létale. Les espèces évoluent de la même façon. La biodiversité permet ainsi à la vie de perdurer malgré de grandes catastrophes. La biodiversité est issue de l'imperfection des mécanismes de réplication de l'ADN, ainsi que des transferts génétiques horizontaux entre espèces proches (création d'individus mosaïques par ajout de blocs de gènes étrangers à l'espèce ayant évolué de manière indépendante des gènes existants). Le danger des monoclones est ainsi l'absence de robustesse liée à l'absence de biodiversité.


Paradigmes lamarckien, darwinien et bactérien.
Il y a deux grands paradigmes historiques dans l'évolution : le paradigme darwinien et le paradigme lamarckien. La figure 2 représente la biodiversité par une courbe en cloche. Le paradigme lamarckien dit que si l'environnement change et qu'une version (allèle) A d'un gène ne permet plus la survie, il y a une évolution intelligente : on construit à partir d'un allèle A un allèle B qui permet la survie. Le paradigme darwinien dit qu'il y a une grande diversité naturelle dans la population ; si B est préexistant dans cette diversité, les bactéries qui portent cet allèle survivent ; si B n'est pas préexistant dans la diversité, la population entière s'éteint simplement. Ainsi le paradigme darwinien exclut l'intelligence, le choix « à la carte ».
Le paradigme « bactérien », encore appelé néo-darwinien, que j'ai élaboré avec mes collègues François Taddei et Ivan Matic, est intermédiaire entre le paradigme lamarckien et le paradigme bactérien. Il n'inclut pas l'intelligence du lamarckisme, mais inclut le stress, qui active des gènes de sauvetage, de survie, jusque là éteints, silencieux. Grâce à ces gènes, le système commence à muter davantage : en cas de catastrophe, avant de mourir, on « essaye une dernière opération génétique désespérée » et on fait exploser la biodiversité : au lieu des taux d'erreurs de 10-10, on augmente le taux d'erreur de 1000 fois, à 10-7. Le résultat est plutôt bon : même si on n'a pas l'intelligence de pouvoir construire B sur mesure, cette évolution inductible multiplie par 1000 la probabilité que l'allèle B soit présent dans la population.


Les mutateurs.
La figure 3 illustre le phénomène de la sélection du deuxième ordre. Cette expérience démontre l'énorme adaptabilité génétique des bactéries : comme disait le célèbre évolutionniste Steven G Gould, les bactéries sont de loin les organismes ayant le plus de succès sur la terre, adaptées à tout, vivant dans toutes sortes de conditions horribles, jusqu'aux eaux bouillantes des geysers. Cette adaptabilité des bactéries à une énorme variété de milieu est précisément notre problème lorsque les bactéries sont pathogènes. On étale des bactéries sur une boîte de Pétri, un tapis qui en contient de l'ordre de 10 milliards. On transfère ces bactéries sur une boîte de gelose qui contient l'antibiotique ampicilline. Seule une bactérie sur 10 à 100 millions survivra. On laisse pousser ces bactéries survivantes 24 heures, chacune donne naissance à environ 10 millions de bactéries. On met ensuite la boîte en contact avec une deuxième boîte, qui contient un autre antibiotique, différent. On sélectionne ainsi une deuxième résistance. On itère l'opération pour sélectionner une troisième propriété : la capacité à se nourrir de lactose. On évalue ensuite le taux de mutation dans les clones bactériens à chaque étape. On observe alors qu'une bactérie sur 100 000 mute 100 à 1000 fois plus vite que les autres. On appelle ces bactéries des mutateurs. Après la première sélection, 1% des bactéries sont des mutateurs, après la deuxième sélection, 50% en sont et après la troisième sélection, toutes les bactéries sont des mutateurs. Ainsi par le biais de cette sélection qui visait trois capacités spécifiques (résistance à deux antibiotiques distincts, capacité de métaboliser le lactose) les bactéries n'ont pas seulement « appris » cette triple capacité, elles ont appris une méthode qui leur permet de muter plus vite, et donc les prépare à faire face beaucoup plus efficacement à des problèmes nouveaux.
Le défaut des bactéries mutateurs est expliqué à la figure 4 Il y a trois types de mécanismes pour maintenir la fidélité au cours de la réplication, chez les bactéries comme chez l'homme. Le premier est un nettoyage des lésions chimiques apparaissant naturellement dans l'ADN qui va être copié, à cause du métabolisme oxydatif ou des radiations par exemple. Les lésions chimiques sont réparées, coupées à gauche et à droite et remplacées, par l'activité d'une ADN polymérase. Un deuxième mécanisme s'occupe des nucléotides, A, T, G, C, substrats de base pour la synthèse de l'ADN ; il assure un taux d'erreur de l'ordre de 10-7 dans ces briques de base. Un dernier mécanisme est un système de contrôle qualité de ce qui vient d'être fabriqué. Ce système compare systématiquement la copie et l'original. A chaque fois que la copie n'est pas conforme à l'original, la copie est corrigée conformément à l'original. Ce système est efficace à 99.9%, et assure donc un taux d'erreur global de l'ordre de 10-10. La majorité des mutateurs perd ce mécanisme, ce qui explique qu'ils ont 1000 fois plus de mutations que la moyenne de la population. En outre, les mutateurs ont des taux de recombinaison plus élevé que la normale et sont donc plus susceptibles que les bactéries sauvages de donner lieu à des individus mosaïques. Avec Ivan Matic, nous avons analysé des bactéries issues d'environnements naturels (hôpitaux, etc.) et calculé que 1% des bactéries naturelles sont des mutateurs. La figure 5 montre une autre expérience. On prend une bactérie Escherichia coli cultivée depuis 1922 en laboratoire. Ces bactéries n'ont donc pas poussé depuis longtemps dans leur milieu naturel, l'intestin d'un mammifère. On introduit ces bactéries identiques dans des souris qui sont stériles, qui ne contiennent au départ aucune bactérie. Rapidement, il y a 20 % des souris ne contenant que les bactéries mutatrices.
Si on met en compétition des bactéries normales et des mutateurs dans ces souris, qui sont pour elles un milieu nouveau, on observe à chaque fois que ce sont les bactéries mutateurs qui s'imposent et s'adaptent le plus rapidement. Si on part d'un ratio mutateurs / sauvage de 1, au bout de quelques jours, il y a 100 000 fois plus de mutateurs que de sauvages. La figure 6 montre le résultat de simulations. En ordonnée, le fitness, la valeur sélective, concrètement la vitesse de survie. On voit qu'au cours du temps la vitesse de croissance augmente au gré de l'acquisition de mutations qui relâchent des freins, et atteint finalement une asymptote, fitness maximale du génome dans l'environnement. La simulation montre que les mutateurs atteignent cette vitesse de croissance maximale beaucoup plus vite que les autres. Ceci se fait au prix de quelques morts, mais n'affecte pas la mortalité générale. Etre un mutateur peut être un inconvénient pour l'individu, et un avantage pour la population. On peut à ce titre comparer les mutateurs à des « expériences pilotes ». A court terme, face à n'importe quel défi évolutif (antibiotiques...) on observe que les mutateurs gagnent face aux bactéries normales. Par exemple, des chercheurs madrilènes on observé que dans les poumons de patients atteints de mucoviscidose et traités en permanence avec des antibiotiques, la moitié de la population est constituée de mutateurs. A terme, les mutateurs paieront le prix des erreurs qui ont permis leur succès.
Nous avons cherché, dans le génome des bactéries, des traces qui prouveraient que dans le passé elles ont évolué à deux vitesses : quand la vie est dure, un taux de mutation élevé et quand la vie est facile, un taux de mutation faible. La figure 7 présente l'espace des séquences observé au gré des mutations. En l'absence de sélection létale, les bactéries vivent une marche sûre et lente vers un fitness amélioré. Les mutateurs au contraire accumulent les mutations beaucoup plus vite, s'adaptent vite, mais la létalité associée à l'érosion de leur génome les condamne à long terme. On a observé que la sexualité des bactéries, les échanges de gènes, permettent à des mutateurs de redevenir non mutateurs. Des mutateurs adaptés peuvent aussi transmettre le gène qui a permis leur succès à des non mutateurs. Disposer d'une fraction de mutateurs est alors un avantage pour la population toute entière.


Conclusion.
Du point de vue de la vitesse d'évolution, de mutation, la vie se passe entre deux extrêmes mortels. Le premier, un conservatif total, avec aucune mutation, condamne les bactéries dès qu'une série de stress importants apparaissent. Le second extrême - trop de mutation - a été fabriqué en laboratoire et ceci n'est pas viable même à court terme : des levures ou des bactéries mutatrices modifiées pour produire 100 000 fois plus de mutations que des cellules normales.
Ainsi le taux de mutation optimal est une fonction de l'environnement : si la vie est facile, le taux de mutation optimal est zéro : le génome est parfaitement adapté, l'environnement ne change pas et on ne change pas le génome ; si la vie est très difficile, le taux de mutation optimal peut devenir énorme (exemple du virus du SIDA).
On pense pour finir au principe de la Reine Rouge de Lewis Caroll : la Reine Rouge est en train de courir tout le temps. Lorsqu'elle arrive au pays de la Reine Rouge, pour pouvoir lui parler, Alice doit courir aussi. Au bout de vingt minutes Alice est épuisée par sa course et interpelle la Reine car elle se rend compte qu'elle est toujours en face du même arbre qu'au départ. La Reine lui explique alors que dans son pays, pour simplement rester sur place il faut courir. C'est en quelque sorte ce que font les bactéries depuis des milliards d'années : elles « courent » génétiquement tellement vite qu'elles réussissent à s'adapter à tout environnement et à tous les antibiotiques que nous avons fabriqués.

 

  VIDEO       CANAL  U         LIEN

 

( si la vidéo n'est pas visible,inscrivez le titre dans le moteur de recherche de CANAL U )

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google