ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

J.O - CEREMONIE D'OUVERTURE

  Auteur : sylvain Date : 28/07/2012
 

J.O - CEREMONIE D'OUVERTURE

                                                                                                                                       

 
 
 
 

PATHOLOGIES DU MUSICIEN

  Auteur : sylvain Date : 26/07/2012
 

PATHOLOGIES  LIEES  A  LA  PRATIQUE  INTENSIVE  D’UN  INSTRUMENT

                                                                      LIEN

 
 
 
 

LE BOSON DE HIGGS

  Auteur : sylvain Date : 07/07/2012
 

Enquête Accelerateur de particules| Boson
 
Le boson de Higgs enfin démasqué


Le CERN vient de présenter les derniers résultats des expériences menées au sein du LHC. Comme les physiciens s’y attendaient, l’existence du fameux boson vient d’être confirmée et la masse de la particule déterminée. Et tout cela est parfaitement compatible avec le Modèle standard.

Par Yaroslav Pigenet, le 03/07/2012 (Mis à jour le 06/07/2012)

  Le LHC (Large Hadron Collider) « Nous avons observé un nouveau boson ! » C'est par cette litote que Joe Incadela, responsable de l’expérience CMS du LHC, a confirmé que la longue traque du boson de Brout-Englert-Higgs venait d’entrer dans une nouvelle phase. Désormais la fameuse particule n’est plus seulement une entité théorique, sa réalité physique a enfin été démontrée par l’expérience et sa masse estimée aux alentours de 125 GeV/c2. Même si la nouvelle était attendue, le petit monde de la physique est enthousiaste devant cette (nouvelle) confirmation expérimentale du Modèle standard. « Il s’agit d’un résultat très préliminaire, mais nous pensons qu’il est très significatif, très robuste », a notamment expliqué Joe Incandela au cours de la conférence organisée le 4 juillet au CERN pour présenter ces résultats.
Une particule clé
L’existence du boson de Higgs a été prédite dès 1964, non seulement par Peter Higgs, mais aussi, indépendamment, par les physiciens Gerald Guralnik, Carl Richard Hagen, Tom Kibble, Robert Brout et François Englert. Cette particule, jusqu’ici hypothétique, donnerait naissance au champ de Higgs, dans lequel « baignerait » l’Univers entier et qui conférerait aux autres particules leur masse spécifique.

 

À ce titre, le Higgs est à la fois la clé de voûte et l’ultime pièce manquante du Modèle standard de la physique des particules. En effet, bien que prédite par la théorie, cette particule élémentaire n’avait jusqu’ici jamais été observée expérimentalement, contrairement à toutes les autres particules postulées par ce même modèle.
Le Modèle standard, c'est quoi ?
  Les particules du Modèle standard La matière qui nous entoure est constituée de particules élémentaires décrites avec un haut degré de précision par une théorie appelée « Modèle standard ». Développé dans la deuxième moitié du XX ème siècle, ce dernier prévoit l'existence de douze particules ( et de leur douze antiparticules) qui composent la matière, les fermions, et treize autres particules, les bosons, qui assurent sa cohésion. Toutes les particules élémentaires prédites par le modèle ont fini par être observées. Toutes sauf une, qui résiste encore et toujours aux expérimentateurs : le boson de Higgs. Et c'est là que le bât blesse. Jusque là cantonnée au statut d'objet mathématique, cette particule est la clé de voûte du Modèle standard. Elle permet d'expliquer certaines incohérences mathématiques et mène à une théorie consistante et extrêmement précise sur le plan prédictif. Le défi du plus puissant accélérateur de particules au monde, le LHC, est justement de détecter la présence du Higgs et prouver ainsi sa réalité physique. Si Higgs existe, alors le Modèle standard sera validé, unifiant ainsi les trois forces fondamentales de l'infiniment petit : les interactions forte, faible et électromagnétique... mais toujours pas la gravitation, qui régit l'infiniment grand.

 

Par exemple, l’ancêtre de LHC, le LEP, a permis d’exclure une masse du Higgs inférieure à 114,4 GeV/c2. Une estimation complétée par les derniers résultats fournis par l’accélérateur Tevatron, qui interdisent toute masse comprise entre 147 et 179 GeV/c2 et situent le Higgs dans l’intervalle 115-135 GeV/c2 avec un risque d’erreur de 3%. Enfin, en décembre 2011, les expériences ATLAS et CMS du LHC ont observé des signaux cohérents indiquant la présence d’un Higgs d’une masse de 124 à 126 GeV/c2. La probabilité d’erreur était cette fois ramenée à 0,2%. Le Graal était donc presque à portée, mais en physique des particules, pour affirmer une découverte, la probabilité d'erreur doit être inférieure à 0,00003%.

 

 

 DOCUMENT + VIDEO     SCIENCE  ACTUALITE         LIEN

 

La discrimination par la désintégration
Cela fait maintenant trois ans que les chercheurs traquent les traces de ce boson dans les débris laissés par les collisions entre protons accélérés par le LHC à des vitesses proches de celle de la lumière.

 


Le Higgs ayant une existence bien trop brève pour être détecté directement, seuls les produits de sa désintégration – d’autres particules élémentaires – peuvent attester de sa présence et dévoiler ses caractéristiques inconnues, notamment sa masse. La principale difficulté étant de distinguer, au milieu de la soupe de particules produite à chaque collision, celles qui proviennent effectivement de la désintégration du Higgs de celles qui découlent d’autres phénomènes parasites générés par la collision. Sachant, en outre, que le Higgs peut emprunter plusieurs trajectoires de désintégration, donnant chacune des produits différents, et que la probabilité de chacune de ces trajectoires dépend de la masse du boson… que l’on ne connaît pas a priori.
Une existence statistique
  Simulation d'une détection de boson de Higgs Ainsi un Higgs doté d’une masse de 100 GeV/c2 a une faible probabilité de se décomposer en deux bosons W, mais cette probabilité est beaucoup plus importante si le Higgs « pèse » 170 GeV/c2. Bref, la détection et la caractérisation du Higgs reposent sur un raisonnement statistique exploitant les données collectées pour des millions de collisions successives, et non sur une identification formelle à 100%. Cette méthode statistique a permis aux chercheurs de réduire peu à peu, expérience après expérience, l’éventail des masses possibles pour le Higgs.
Des GeV qui en font des tonnes
En physique des particules, l’électron-volt (eV) est une unité d’énergie beaucoup plus pratique à utiliser que le joule du système international (1eV= 1,60217653×10-19 J). De même, en raison de l’équivalence masse/énergie (E=mc2 donc m=E/c2) démontrée par la relativité restreinte d’Einstein, pour des raisons de commodité, on exprime la masse en électron-volt/c2 (eV/c2) plutôt qu’en kilogramme.    

 C’est le franchissement de ce seuil de significativité statistique qui vient juste d’être annoncé par les responsables des expériences ATLAS et CMS dont les résultats seront prochainement publiés. Mieux, les deux expériences, menées indépendamment, parviennent à une estimation similaire de la masse du boson de Higgs, ce qui renforce leur validité. A savoir, 125,3 GeV/c2 selon l’expérience CMS, et 126,5 GeV/c2 selon l’expérience ATLAS, soit 133 fois la masse du proton, en total accord avec les masses prévisibles par le Modèle standard.
Juste un boson ?
  Désintégration d'un candidat boson de Higgs La quantité totale de données collectées et analysées par ATLAS ayant doublé depuis décembre, il paraissait donc assez probable que ce seuil statistique fatidique serait enfin franchi et que le CERN pourrait annoncer LA détection du fameux boson. Et justifier ainsi les 8,9 milliards € qu’a coûté la construction du LHC.  Mais même si on comprend Peter Higgs, 83 ans, qui considère que cette confirmation expérimentale « est la chose la plus incroyable qui soit arrivée dans sa vie », on ne peut s’empêcher de noter que la « percée » annoncée pour cette conférence consiste plutôt à confirmer et affiner une découverte prévue depuis longtemps. Comme l’a reconnu Fabiola Gianotti, responsable d’Atlas, « ceci n’est qu’un début, nous aurons besoin de plus de données pour commencer à comprendre la nature de cette particule ». Des données qui  permettront peut-être de parachever, mais aussi de dépasser voire d’invalider un Modèle standard dont, à l’instar du mathématicien Alain Connes, « personne ne pense qu’il est le fin mot de l'histoire surtout à cause du très grand nombre de paramètres libres qu'il contient ».   
Yaroslav Pigenet, le 03/07/2012 | Mis à jour le 06/07/2012

 
 
 
 

AMELIORER SA VISION

  Auteur : sylvain Date : 21/06/2012
 

Paris, 1er JUIN 2012

Améliorer sa vision grâce à la stimulation magnétique transcranienne


Une équipe internationale menée par des chercheurs du Centre de recherche de l'institut du cerveau et de la moelle épinière (CNRS / Inserm / UPMC), a réussi à augmenter les capacités visuelles d'un groupe de sujets sains grâce à la stimulation magnétique transcranienne (TMS). Après stimulation d'une zone cérébrale de l'hémisphère droit liée à l'orientation de l'attention spatiale et à la conscience perceptive, les sujets ont montré une plus grande aptitude à percevoir une cible apparaissant sur un écran. Ces travaux, qui viennent d'être publiés dans la revue PLoS ONE, pourraient servir à développer de nouvelles techniques de rééducation pour certains troubles de la vision. De plus, ils pourraient permettre d'améliorer les capacités de personnes exerçant des tâches qui nécessitent une très grande précision.
La TMS est une technique non invasive qui consiste à délivrer une impulsion magnétique sur une zone donnée du cerveau. En résulte une activation des neurones corticaux situés dans le rayon d'action du champ magnétique, qui modifie leur activité de façon indolore et temporaire. Depuis quelques années, les scientifiques s'intéressent à la possibilité d'améliorer certaines fonctions cérébrales chez les sujets sains à l'aide de cette technique.

C'est dans ce cadre que se situent les derniers travaux de l'équipe d'Antoni Valero-Cabré sur la stimulation d'une région de l'hémisphère cérébral droit appelée champ oculogyre frontal. Celle-ci n'est pas une aire visuelle primaire à proprement parler, mais elle participe à la planification des mouvements oculaires, ainsi qu'à l'orientation de l'attention de chaque individu dans l'espace visuel. Dans une première expérience, un groupe de sujets sains devait tenter d'apercevoir une cible de très bas contraste apparaissant sur un écran durant 30 ms. Pour certains essais, avant l'apparition de la cible, les sujets recevaient sur cette région frontale une impulsion magnétique d'une durée comprise entre 80 et 140 ms. Résultat, la réussite était plus fréquente après l'utilisation de la TMS. La sensibilité visuelle des sujets sains a été transitoirement augmentée de l'ordre de 12%. Dans une deuxième expérience, les sujets recevaient un bref indice visuel leur indiquant, l'endroit où la cible pourrait apparaître. Dans cette configuration, l'augmentation de la sensibilité visuelle, qui est restée du même ordre, n'était présente que quand l'indice signalait la vraie localisation de la cible.

Bien que les fonctions cérébrales telles que la vision consciente soient très optimisées chez les adultes en bonne santé, ces résultats montrent qu'il existe une marge d'amélioration importante, et que celle-ci peut être « augmentée » par la TMS. Cette technique pourrait être testée pour la rééducation de patients ayant des lésions au niveau du cortex, dues par exemple à un AVC, ainsi que chez des patients souffrant de problèmes rétiniens. La seconde expérience suggère qu'une rééducation basée à la fois sur la TMS et sur des indices visuels pourrait être plus sélective que la seule utilisation de la stimulation. Les chercheurs veulent explorer cette voie grâce à la TMS répétitive qui, cette fois-ci, permettrait d'obtenir une modification durable de l'activité cérébrale.

Par ailleurs, selon les chercheurs, dans un futur proche, la TMS pourrait aussi servir à améliorer les capacités attentionnelles d'individus exerçant des tâches qui réclament d'importantes compétences visuelles.

Ces expériences ont bénéficié du soutien de l'initiative européenne ERANET NEURON BEYONDVIS, financée en partie par l'ANR.

DOCUMENT            CNRS          LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google