ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

L'ESSENTIEL SUR... Les déchets radioactifs

 

 

 

 

 

 

 

L'ESSENTIEL SUR...
Les déchets radioactifs

Publié le 27 janvier 2015

On appelle déchet radioactif toute matière radioactive qui ne peut plus être ni recyclée ni réutilisée. Du fait de leur radiotoxicité, potentiellement dangereuse pour l’homme et pour l’environnement, les déchets radioactifs sont gérés de façon spécifique. Cette gestion est encadrée par la Loi. 90 % des déchets radioactifs (en volume), produits en France, disposent déjà d’une filière de gestion en stockage ultime. Les déchets de haute activité et de moyenne activité à vie longue (HA et MA-VL) n’ont pas encore de filières définitives de stockage. Ils sont conditionnés et entreposés par leurs producteurs, dans l’attente d’un site de stockage définitif.

DÉCHETS RADIOACTIFS : DÉFINITION
Les déchets radioactifs sont d’une grande diversité : éléments issus des combustibles usés des centrales nucléaires et des activités Défense pour la force de dissuasion, matériaux issus du démantèlement d'installations nucléaires, éléments radioactifs à usage industriel (techniques de contrôle de fabrication, stérilisation) ou médical (imagerie, radiothérapie), éléments issus de la recherche nucléaire…
En France, les déchets radioactifs sont classés selon deux critères :
*         Leur durée de vie, calculée en fonction de la « période radioactive » des radioéléments contenus : la période est le temps au bout duquel la quantité d’un même radionucléide est divisée par deux. Elle varie, selon les radionucléides, de quelques jours à plusieurs milliers d’années. On parle de déchets à vie courte (VC), quand la période est inférieure à 31 ans, et de déchets à vie longue (VL) au-delà.
*        
*         Leur niveau de radioactivité, exprimé en becquerels : cela correspond au nombre de désintégrations d’atomes par seconde. On parle de déchets de très faible activité (TFA), faible activité (FA), moyenne activité (MA) ou haute activité (HA).


Les différentes catégories de déchets radioactifs
En fonction de ces deux critères, il existe 5 catégories de déchets radioactifs :
*         Les déchets de très faible activité (TFA) issus principalement du démantèlement des installations nucléaires : gravats, bétons, ferrailles. Leur radioactivité décroit de manière significative en une dizaine d'années. Ils représentent 27% du volume des déchets radioactifs produits en France et contiennent moins de 0,01% de la radioactivité de l’ensemble des déchets.

*         Les déchets de faible et moyenne activité à vie courte (FMA-VC) : il s'agit essentiellement des déchets liés à la maintenance des installations nucléaires. Une partie provient aussi des hôpitaux ou des laboratoires de recherche. Ce sont des objets contaminés comme des gants, des filtres, des résines… Leur radioactivité décroit de manière significative en 300 ans environ. Les déchets FMA-VC constituent 63% du volume des déchets radioactifs, pour 0,02% de leur radioactivité.
*        
*         Les déchets de faible activité à vie longue (FA-VL) : cette catégorie couvre les déchets radifères (contenant du radium) provenant de minéraux utilisés dans certaines industries et les déchets de graphite issus du démantèlement des réacteurs nucléaires de 1ère génération. Les déchets FA-VL constituent 7% du volume des déchets radioactifs, pour 0,01% de leur radioactivité. 

*         Les déchets de moyenne activité à vie longue (MA-VL), issus du traitement des combustibles usés des centrales nucléaires : structures qui entourent les combustibles usés (coques et embouts) et effluents liquides issus du procédé de retraitement. Les déchets MA-VL constituent 3% du volume des déchets radioactifs, pour 4% de leur radioactivité.

*         Les déchets de haute activité à vie longue (HA-VL) correspondent aux déchets issus du traitement des combustibles nucléaires usés : ils contiennent les « produits de fission » et les « actinides mineurs » formés par les réactions nucléaires dans le combustible lors de son séjour en réacteur. Leur durée de vie peut s'étendre sur plusieurs milliers, voire plusieurs millions d'années. Ils ne représentent que 0,2% du volume des déchets radioactifs mais 96% de la radioactivité totale des déchets radioactifs en France.



ENJEU :
ASSURER UNE GESTION DURABLE
DES DÉCHETS RADIOACTIFS

Les déchets radioactifs contiennent des radionucléides potentiellement dangereux pour l’homme et pour l’environnement. Ils doivent donc être gérés de manière spécifique tout au long de leur durée de nuisance potentielle : inventaire et collecte des déchets radioactifs, conditionnement adaptés, solutions de stockage sûres et pérennes.
Juridiquement, les grands principes de gestion des déchets radioactifs sont indiqués par la loi du 28 juin 2006 relative à la gestion durable des matières et déchets radioactifs.
Ces principes sont les suivants :
*         protection de la santé des personnes et de l’environnement ;
*         réduction de la quantité et de la nocivité des déchets radioactifs ;
*         prévention ou limitation des charges supportées par les générations futures ;
*         principe pollueur-payeur qui prévaut en droit de l’environnement.

L'Agence nationale pour la gestion des déchets radioactifs (Andra) est l’organisme chargé de trouver, mettre en œuvre et garantir des solutions de gestion sûres pour l’ensemble des déchets radioactifs français.
Renouvelé tous les 3 ans, le plan national pour la gestion des matières et des déchets radioactifs (PNGMDR) constitue l’outil privilégié pour mettre en œuvre ces principes. Par ailleurs, tous les 3 ans, un inventaire complet des matières et des déchets radioactifs est réalisé et publié par l’Andra.
Aujourd’hui, 90 % des déchets nucléaires (en volume) produits en France disposent déjà d’une filière de gestion en stockage ultime. L’Andra dispose de centres dédiés de stockage et peut ainsi les gérer de façon industrielle : les déchets de très faible activité (TFA) sont stockés sur le site de Morvilliers (Aube), les déchets de faible et moyenne activité à vie courte (FMA-VC) sont stockés en surface sur le centre de Soulaines (dans l’Aube également).
Pour les déchets FA-VL, une démarche de recherche de site de stockage est conduite par l’Andra depuis 2008. En attendant la création d'un centre pouvant les accueillir, les déchets FA-VL sont entreposés dans des installations spécifiques, le plus souvent sur le lieu même où ils sont produits.
Enfin, les déchets de haute activité (HA) et de moyenne activité à vie longue (MA-VL) n’ont pas non plus de filière définitive de stockage. Dans l’attente d’un site de stockage définitif, ils sont conditionnés et entreposés dans des installations ad hoc par leurs producteurs, principalement à La Hague (Manche), Marcoule (Gard), Cadarache (Bouches-du-Rhône) et Valduc (Côte-d’Or). À terme, ils devraient être stockés sous terre, dans des formations géologiques de grande profondeur. C’est le projet Cigéo (Centre industriel de stockage géologique pour les déchets) de l’Andra, qui fait l’objet d’un débat public durant l’année 2013.


LES RECHERCHES SCIENTIFIQUES
SUR LES DÉCHETS RADIOACTIFS
La gestion des déchets radioactifs s’inscrit dans une démarche de progrès continu. Elle fait donc l’objet de programmes de R&D importants depuis la fin des années 1950, le but étant de minimiser la quantité de déchets, de concentrer la radioactivité et de garantir le confinement dans des conditions sûres.
Les déchets HA et MA-VL font l’objet de programmes de recherches particuliers dont les grandes orientations sont fixées par la loi du 28 juin 2006.
Cette loi définit trois axes de recherche et d’études complémentaires :
*         La séparation/transmutation des actinides mineurs, sous la responsabilité du CEA : il s’agit d’isoler puis de transformer les éléments les plus radiotoxiques en les « transmutant » en d’autres éléments moins radiotoxiques et à vie plus courte. Ces recherches sont menées par le CEA en lien avec celles menées sur les réacteurs nucléaires à neutrons rapides de 4ème génération, capables de réaliser la transmutation. Le CEA a coordonné les travaux de recherche menés par les établissements publics (Andra, CEA, CNRS, Universités) et leurs partenaires industriels (Areva, EDF) afin d’évaluer les perspectives industrielles des technologies étudiées. Un dossier sur le résultat de ces travaux a été remis au gouvernement fin 2012.

Le stockage en formation géologique profonde (projet Cigéo en Meuse / Haute-Marne), sous la responsabilité de l’Andra : le stockage des déchets de haute et moyenne activité à vie longue en formation géologique profonde est retenu par la loi comme solution de référence. Cet axe de recherche correspond au projet Cigéo de l’Andra. Dans le domaine de la R&D, le CEA y contribue avec des études notamment sur le comportement à long terme des colis de déchets en milieu géologique profond et sur la migration des radionucléides dans les couches géologiques.

Le 3ème axe d’étude porte sur l’entreposage des déchets radioactifs HA et MA-VL en attente d’une solution de gestion définitive. Il est aussi confié à l’Andra. Le CEA a contribué à des études de conception de ces installations d’entreposage.

 

    DOCUMENT     cea         LIEN

 
 
 
 

LES ACCÉLÉRATEURS DE PARTICULES

 




 

 

 

LES ACCÉLÉRATEURS DE PARTICULES

A quoi sert un accélérateur de particules ?

De l’étude des constituants ultimes de la matière à la stérilisation dans l’industrie agroalimentaire en passant par l’étude des matériaux, … découvrez à quoi servent les accélérateurs de particules.

Publié le 6 janvier 2016

Depuis la conception technique d'un accélérateur dans les années 1920, les accélérateurs de particules se sont beaucoup développés et ont pris des tailles très diverses, de quelques mètres à quelques dizaines de kilomètres.
On peut classer les accélérateurs en deux grandes catégories :
*         Linéaires, où le faisceau de particules traverse une seule fois l'accélérateur
*         Circulaires, où le faisceau de particules repasse plusieurs fois par les mêmes sections.

Mais il existe beaucoup de sous-catégories selon les techniques d'accélération et il y a des variantes combinant différentes catégories. Les grands centres d'accélérateurs utilisent souvent une suite d'accélérateurs de différents types.
On peut classer les accélérateurs selon leurs utilisations, ce qui correspond d'ailleurs aussi à peu près à leur développement historique.

LES UTILISATIONS DES ACCÉLÉRATEURS DE PARTICULES

Etudier la matière et explorer l’atome
grâce aux collisions de particules

L'objectif premier d'un accélérateur est de communiquer de l’énergie à des particules et de provoquer leurs collisions afin d'étudier leurs natures et leurs propriétés. C'est l'étude des constituants élémentaires de la matière.

Pour comprendre un objet complexe (la matière, sa nature, ses propriétés, son origine), les chercheurs l'analysent, c’est-à-dire le découpent en petits morceaux plus simples à étudier, avec l'espoir de pouvoir ensuite comprendre l'ensemble.

Le plus grand accélérateur de particules au monde servant cet objectif de recherche fondamentale est le LHC au CERN (Suisse). C'est un accélérateur circulaire de 27 km de circonférence, lui-même alimenté en particules (protons ou ions de plomb) par toute une série d'accélérateurs linéaires et circulaires.


Le LHC est le plus puissant accélérateur de particules au monde, localisé à Genève (Suisse). A gauche : son tracé vu du ciel. A droite : le tunnel où il est installé. © CERN


Il existe aussi des accélérateurs linéaires qui servent à faire collisionner les particules comme le SLAC à Stanford (Etats-Unis) de 3 km de longueur, ou le projet international ILC de 30 km de longueur.

Les communautés d'utilisateurs sont essentiellement les physiciens nucléaires (étude du noyau atomique) et les physiciens des particules (étude des constituants du noyau).


Par ailleurs, en France, depuis 1983, les physiciens disposent du Grand accélérateur national d'ions lourds, le Ganil. Cet accélérateur d’ions, reconnu Grande installation européenne depuis 1995, est un équipement commun au CEA et au CNRS dédié aux recherches fondamentales et appliquées en physique nucléaire, en physique atomique et des matériaux. Chaque année, plus de 700 physiciens y sont accueillis pour étudier l’atome et son noyau, dont près de 300 chercheurs étrangers (en majorité européens). Grâce au Ganil, les chercheurs ont fait de nombreuses avancées et découvertes sur la structure du noyau de l'atome, ses propriétés et l’interaction d’ions lourds avec la matière.

Spiral2 (Système de Production d’Ions Radioactifs Accélérés en Ligne) produira et accélèrera dès 2016 des faisceaux d’ions stables parmi les plus intenses du monde. Ils permettront de mener des études jusqu’alors impossibles, ouvrant ainsi de nouveaux horizons à la physique du noyau, dans la continuité des expériences réalisées au Ganil depuis plus de 30 ans. Spiral2 donnera à la France et à l’Europe une réelle avance technologique et scientifique.


Les noyaux exotiques, la spécialité du Ganil
La « spécialité » du Ganil est la production et l’étude des noyaux exotiques. Inexistants sur Terre, ces noyaux qui comportent des proportions anormales de neutrons, représentent près de 90 % des noyaux présents dans l’Univers. Ces noyaux intéressent tout particulièrement les physiciens car leur structure est bien différente de celle des noyaux classiques. En forme de poire, de cacahuète ou de soucoupe volante, … ils bousculent les représentations. Leur étude est essentielle dans de nombreux domaines de la physique nucléaire. Elle permet entre autres de tester les modèles théoriques sur la cohésion du noyau, mais aussi de l’astrophysique, notamment pour comprendre la formation des noyaux des atomes au sein des étoiles. Les noyaux exotiques se révèlent être une véritable mine d’informations (propriétés nouvelles, cohésion accrue, déformations insoupçonnées,…), remettant en cause les connaissances sur le noyau atomique.


Sonder les matériaux en produisant
un rayonnement synchrotron
En voulant étudier la matière de plus en plus profondément, on a besoin d’énergies de plus en plus élevées. Lorsque les trajectoires des particules sont courbées, celles-ci émettent de l'énergie sous forme de lumière appelée rayonnement synchrotron. C'est un phénomène parasite non voulu car l’énergie perdue l’est au détriment de celle de l’accélération. Mais les chercheurs se sont vite rendus compte que ce rayonnement est très directionnel (un peu comme un laser), très puissant, jusqu'à 10 000 fois plus brillant que la lumière solaire, avec un spectre de couleurs très riche, des rayons X jusqu'à l'infrarouge. Ce rayonnement synchrotron peut donc être utilisé comme un microscope, à la fois puissant et souple, pour sonder et analyser des matériaux aussi divers que les cristaux, les semi-conducteurs, le béton, les cellules vivantes ou les œuvres d'art.


Le synchrotron


Nb : ce contenu existe également en version interactive à cette adresse (requiert flash).
Votre navigateur ne permet pas de lire des vidéos.
 
Schéma de principe du synchrotron : Les équipements de base de SOLEIL sont l’accélérateur linéaire, le booster et l’anneau de stockage. Le rayonnement synchrotron est dirigé par des systèmes optiques vers les stations expérimentales. Chaque ligne de lumière constitue un véritable laboratoire de biologie, chimie, sciences de la Terre… © Synchrotron SOLEIL – EPSIM – Jean-François Santarelli

Travail sur la ligne FIP de l'ESRF © D.Morel/CEA
Les accélérateurs spécialement optimisés pour produire le rayonnement synchrotron ont donc été conçus dès les années 1960. Ils sont utilisés par une très large communauté venant de différents domaines, scientifiques (physique, chimie, biologie, etc.) ou techniques (matériaux, œuvres d'art, etc.). De ce fait, ces accélérateurs sont parmi les plus répandus dans le monde. En France, le synchrotron SOLEIL, sur le plateau de Saclay, ou encore l’ESRF à Grenoble relèvent de cette catégorie d’accélérateurs.


SOLEIL est le centre de rayonnement synchrotron français à la fois grand instrument pluridisciplinaire et laboratoire de recherche. © Synchrotron SOLEIL – CAVOK Production/Laurent Persin


Production de rayonnement synchrotron-E-XFEL
Depuis peu, la communauté scientifique s'intéresse aux accélérateurs linéaires produisant des flash de lumière synchrotron ultracourts et auto-amplifiés comme E-XFEL (European X-ray Free Electron Laser) en cours de construction à Hambourg, Allemagne, qui fera 3 km de long. Ici, les trajectoires des électrons sont courbées de façon répétée sur des périodes de l'ordre du centimètre, de telle manière que la lumière émise s'auto-amplifie.

Irradier les matériaux, stériliser et guérir
Avec le développement d’accélérateurs de plus en plus performants et fiables, fournissant des faisceaux de particules avec des propriétés pratiquement à la demande, il est désormais possible de les utiliser pour irradier des cibles de toute nature.

© A.Lorec/CEA
La cible peut être une tumeur maligne à traiter (secteur médical), un aliment à stériliser (secteur sécurité alimentaire), ou encore une cible de spallation destinée à produire des neutrons (secteur recherche scientifique) comme ESS, European Spallation Source, à Lund, Suède. Pour chaque type d'utilisation, il y a donc un accélérateur ou un type d'accélérateur dédié.

 

   DOCUMENT     cea         LIEN

 
 
 
 

LE MONDE QUANTIQUE AU TRAVAIL : L'OPTOÉLECTRONIQUE

 

 

 

 

 

 

 

LE MONDE QUANTIQUE AU TRAVAIL : L'OPTOÉLECTRONIQUE

L'optoélectronique est une discipline scientifique et technologique qui a trait la réalisation et l'étude de composants mettant en jeu l'interaction entre la lumière et les électrons dans la matière. Ces composants, qui permettent de transformer la lumière en courant électrique et réciproquement, sont des instruments privilégiés pour comprendre le nature de la lumière et des électrons. Il est donc peu étonnant que ce soit le tout premier composant opto-électronique (la cellule photoélectrique) qui soit à l'origine de la découverte d'Albert Einstein de la dualité onde-corpuscule. Dans cette Conférence, nous décrirons comment ce concept fondateur de la Physique Quantique a permis de comprendre les propriétés électroniques et optiques de la matière. Nous décrirons comment ces propriétés quantiques sont mises en oeuvre dans les quelques briques de base conceptuelles et technologiques à partir desquelles tous les composants optoélectroniques peuvent être élaborés et compris. Nous décrirons enfin quelques exemples de ces composants optoélectroniques qui ont changé profondément notre vie quotidienne : - les détecteurs quantiques (caméscopes, cellules solaires, infrarouge…) - les diodes électroluminescentes (affichage, éclairage, zapettes, …) - les diodes laser (réseaux de télécommunication, lecteurs de CD-DVD, internet, …) Nous explorerons finalement quelques nouvelles frontières de cette discipline, qui est un des domaines les plus actifs et des plus dynamiques de la Physique à l'heure actuelle.

Transcription* de la 590e conférence de l'Université de tous les savoirs prononcée le 12 juillet 2005
Le monde quantique au quotidien : l'optoélectronique
Par Emmanuel Rosencher
Cet exposé propose de vous montrer comment la mécanique quantique, domaine abstrait, sophistiqué, voire ésotérique pour certains, est à la base de révolutions technologiques qui ont transformé notre quotidien. Nous montrerons tout d'abord comment la physique quantique est née de l'étude d'un composant optoélectronique (définissons l'optoélectronique comme étant l'étude de l'interaction qui a lieu entre la lumière et les électrons dans les solides). Nous montrerons ensuite comment la mécanique quantique a rendu la monnaie de sa pièce à l'optoélectronique en lui fournissant des briques de bases conceptuelles extrêmement puissantes, à partir desquelles un certains nombres de composants comme les détecteurs quantiques ou les émetteurs de lumière ont été réalisés. Nous présenterons enfin les défis actuels que l'optoélectronique tente de relever.
Là où tout commence : l'effet photoélectrique
Tout commence en 1887. Rudolph Hertz, célèbre pour la découverte des ondes Hertziennes, va découvrir l'effet photoélectrique, aidé de son assistant Philipp von Lenard. Cet effet va révolutionner notre compréhension de la lumière comme de la matière, bref, notre vision du monde. L'expérience qu'ils ont réalisée était pourtant on ne peut plus simple : deux plaques métalliques sont placées dans le vide. On applique à ces plaques une différence de potentiel. Le courant qui circule dans le système est mesuré. Comme les plaques métalliques sont placées dans le vide, les électrons n'ont pas de support pour passer d'une électrode à l'autre, et donc aucun courant ne peut circuler dans le système. Hertz décide alors d'illuminer une des plaques avec de la lumière rouge, il s'aperçoit que rien ne change. Par le hasard de l'expérience, il éclaire alors la plaque avec de la lumière bleue, et s'aperçoit cette fois qu'un courant commence à circuler. Il est important de noter que, même avec une grande intensité de lumière rouge, aucun courant ne circule, alors qu'une faible lumière bleue fait circuler le courant. Les deux savants concluent leur expérience par la phrase suivante, qui deviendra une des pierres fondatrices de la physique quantique : « il semble y avoir un rapport entre l'énergie des électrons émis et la fréquence de la lumière excitatrice. »
A la même époque, un autre grand savant, Max Planck, travaille sur un sujet totalement différent, à savoir le « spectre du corps noir » ( voir Figure 1): en d'autres termes, il étudie la lumière émise par des corps chauffés. Le fer, par exemple, une fois chauffé devient rouge. A plus haute température, il vire au jaune, puis au blanc. Max Planck étudie donc le fait que tous les corps chauffés vont avoir un comportement commun : à une température donnée, ils rayonneront principalement une certaine longueur d'onde. Par exemple, notre corps à 37°C émet des ondes à 10 mm (lumière infrarouge non visible). En revanche, à 5000°C (température correspondant à la surface du soleil), le maximum se déplace, le corps émet autour de 500 nm (jaune). Cette correspondance entre la température du corps noir et la nature de la lumière émise par ce corps va littéralement rendre fou toute une génération de physiciens qui n'arrivent pas à expliquer ce phénomène. Max Planck, au début du XXème siècle, déclarera à la société allemande de physique qu'il peut rendre compte de ce comportement. Pour cela, il doit supposer que la lumière arrive en paquets d'énergie et que chaque paquet d'énergie est proportionnel à la fréquence de la lumière, c'est-à-dire que l'énergie de chaque grain de lumière est le produit de la fréquence de cette onde par une constante, ridiculement petite (environ 6.10-34 J.s). S'il est persuadé d'avoir fait une grande découverte, Max Planck n'a pour autant pas la moindre idée de ce que sont ces « quanta » d'énergie qu'il a introduits dans son calcul.
figure1
Spectre du corps noir (le fer chauffé de la photo émet des longueurs d'onde réparties sur la courbe bleue, la courbe rouge est émise par un humain qui n'a pas de fièvre)
Pendant ce temps, à la société Anglaise de physique, Lord Kelvin fait son discours inaugural, où il déclare que toute la physique est constituée, la récente théorie ondulatoire de Maxwell rendant très bien compte du comportement de la lumière. Il ne reste plus que quelques phénomènes incompris, d'un intérêt secondaire. Parmi ces phénomènes incompris figurent évidemment le spectre du corps noir, et l'effet se produisant dans la cellule photoélectrique.
Albert Einstein va réaliser le tour de force de montrer que ces deux phénomènes ont une même origine, origine qu'il baptisera la dualité onde-corpuscule. L'hypothèse révolutionnaire d'Einstein est de dire que la lumière, considérée jusqu'alors comme une onde, est également une particule. A la fois onde et particule, la lumière véhicule ainsi une quantité d'énergie bien précise.
Le raisonnement d'Einstein se comprend bien sur un diagramme d'énergie, où est représentée l'énergie des électrons en fonction de leur position ( voir Figure 2). Pour être arraché du métal, un électron doit recevoir l'énergie qui lui permet d'échapper à l'attraction du métal. Cette énergie est appelée potentiel d'ionisation. Les électrons sont donc piégés dans le métal, et il leur faut franchir ce potentiel d'ionisation pour le quitter. L'hypothèse d'Einstein consiste à dire que la lumière est constituée de particules et que chaque particule a une énergie valant h.f, où h est la constante établie par Max Planck, et f la fréquence de la lumière. Si cette énergie h.f est inférieure au potentiel d'ionisation (comme c'est le cas pour la lumière rouge), aussi puissant que soit le faisceau de lumière, nous n'arracherons pas le moindre électron au métal. En revanche, si la lumière est bleue, la longueur d'onde est plus courte, ce qui correspond à une fréquence f plus grande, donc une énergie plus grande, les électrons vont alors acquérir l'énergie suffisante pour quitter le métal et aller dans le vide. Cette théorie permet donc d'expliquer le phénomène jusqu'alors incompris observé par Hertz et Leenard.

figure2
Diagramme d'énergie d'Einstein
Einstein ne se contente pas de cette explication, il propose une expérience permettant de vérifier son hypothèse. Si on mesure l'excès d'énergie des photons (représenté DE sur la Figure 2), c'est-à-dire si on mesure l'énergie des électrons une fois qu'ils ont été arrachés par la lumière, on doit pouvoir en déduire la valeur de la constante de Planck h.
La théorie d'Einstein est accueillie à l'époque avec fort peu d'enthousiasme. La physique semblait jusqu'alors bien comprise, la lumière était une onde, et on rendait compte de l'écrasante majorité des phénomènes observés. Et Einstein vient tout bouleverser ! De nombreux scientifiques vont donc tenter de montrer que sa théorie est fausse. Notamment Millikan, qui va passer 12 années de sa vie à tester la prédiction d'Einstein. Millikan reconnaîtra finalement son erreur : son expérience montrera bien que l'énergie en excès dans les électrons est proportionnelle à la fréquence de la lumière excitatrice, et le coefficient de proportionnalité est bien la constante de Planck h.
Einstein venait d'unifier deux phénomènes qu'a priori rien n'apparentait : la lumière émise par un corps chauffé, et l'excès d'énergie d'un électron émis dans le vide. Ce lien existe, et c'est la physique quantique.
On peut donc relier la longueur d'onde de la lumière à son énergie ( voir Figure 3). Ainsi, le soleil qui rayonne principalement dans le jaune, c'est-à-dire à des longueurs d'onde d'environ 500 nm émet des photons de 2 eV (électron-volt). Le corps humain à 37°C rayonne une onde à 10 mm, ce qui correspond à des photons d'énergie 0,1eV. Rappelons qu'un électron-volt correspond à l'énergie d'un électron dans un potentiel électrique de 1V.

figure3
Correspondance entre longueur d'onde de la lumière et énergie du photon
Les briques de base
Comme nous l'avons mentionné en introduction, la physique entre alors dans un cercle vertueux : la technologie (par la cellule photoélectrique) fournit à la physique un nouveau concept fondamental, la physique quantique va en retour développer des outils conceptuels extrêmement puissants qui vont permettre le développement des composants optoélectroniques que nous allons étudier.
Les Semi-conducteurs
Avant d'entrer dans ce cercle vertueux, un concept manque encore à la physique quantique. Il va être proposé par le français Louis de Broglie en 1925. Ce dernier fait le raisonnement suivant : Einstein vient de montrer que la lumière, qui est une onde, se comporte comme une particule. Que donnerait le raisonnement inverse? Autrement dit, pourquoi la matière (les atomes, les électrons, tout objet ayant une masse) ne se comporterait-elle pas également comme une onde ? De Broglie va montrer qu'on peut associer à l'énergie d'une particule matérielle une longueur d'onde. Il montre notamment que, plus la particule a une énergie élevée, plus sa longueur d'onde est faible. La correspondance entre énergie et longueur d'onde pour la matière différera cependant de celle pour les photons, car les photons n'ont pas de masse.
Partant de cette hypothèse, Wigner, Seitz et Bloch se demandent ce que devient cette longueur d'onde lorsque l'électron est dans la matière, où il est soumis à un potentiel d'environ 5V. Leur calcul leur montre que sa longueur d'onde est alors d'environ 5 angströms (1 angström valant 10-10 mètres)... ce qui correspond à peu près à la distance entre atomes dans la matière.

figure4
Comportement d'une onde électronique dans la matière et naissance de la structure de bandes
La physique quantique va alors donner une compréhension nouvelle et profonde du comportement des électrons dans la matière. Rappelons que la matière peut souvent être représentée par un cristal, c'est-à-dire un arrangement périodique d'atomes, distant de quelques angströms. Imaginons qu'une onde électronique (c'est-à-dire un électron) essaie de traverser le cristal. Si la longueur d'onde vaut 20 angströms, elle est très grande par rapport au maillage du cristal, et elle ne va donc pas interagir avec le cristal. Cette longueur d'onde va donc pouvoir circuler, on dira qu'elle est permise, et par conséquent l'énergie qui lui correspond est elle aussi permise (onde rouge sur la Figure 4). Il y aura un très grand nombre de longueur d'ondes permises, auxquelles correspondront des bandes d'énergies permises. En revanche, si la longueur d'onde de l'électron est de l'ordre de 5 angströms (onde bleue sur la Figure 4), c'est-à-dire de la distance être atomes, l'électron va alors résonner avec la structure du cristal, et l'onde ne va pas pouvoir pénétrer dans la matière. L'onde électronique est alors interdite dans la matière, et l'énergie qui lui correspond est également interdite dans la matière. Ainsi on voit apparaître, pour décrire les électrons dans la matière, une description en termes de bandes permises et de bandes interdites. Nous appellerons la bande permise de plus basse énergie (sur la figure 5) la bande de valence, et la bande permise au-dessus d'elle la bande de conduction.
A partir de cette structure de bandes, Pauli va montrer que les atomes peuplent d'abord les états de plus basse énergie. Ils vont ainsi remplir complètement la bande de valence, et laisser la bande de conduction vide. Il montre alors que dans une telle configuration les électrons ne peuvent pas conduire l'électricité.

figure5
Les électrons de la bande de valence, comme les pièces d'un jeu de taquin
Pour illustrer ses propos, comparons la matière à un jeu de taquin ( Figure 5). Rappelons que le taquin est un puzzle fait de pièces carrées et où ne manque qu'une pièce. C'est l'absence d'une pièce qui permet de déplacer les pièces présentes. Pour Pauli, une bande de valence pleine d'électrons, est comme un taquin qui n'aurait pas de trous : aucun élément ne peut bouger, car toutes les cases sont occupées. C'est pourquoi beaucoup de matériaux, notamment les semi-conducteurs (qui, comme leur nom l'indique sont de mauvais conducteurs), ne peuvent pas conduire le courant, leur bande de valence étant trop pleine. Pour conduire l'électricité, il va être nécessaire de prendre des électrons de la bande de valence, et de les envoyer dans la bande de conduction. Alors les rares électrons dans la bande de conduction auront tout l'espace nécessaire pour bouger, ils conduiront aisément le courant. De plus, ces électrons auront laissé de la place dans la bande de valence, ce qui revient, dans notre image, à enlever une pièce au taquin. Les électrons pourront alors bouger, mal, mais ils pourront bouger. Ce déplacement des électrons dans la bande de valence peut être réinterprété : on peut considérer qu'un électron se déplace pour occuper une place vacante, puis qu'un autre électron va occuper la nouvelle place vacante, et ainsi de suite... ou on peut considérer que nous sommes en présence d'un trou (une absence d'électron) qui se déplace dans le sens opposé au mouvement des électrons ! Cette interprétation nous indique alors que, dans la bande de valence, ce ne sont pas les électrons qui vont bouger, ce sont les « absences d'électrons », c'est-à-dire des trous, qui sont, de fait, de charge positive.
Wigner, Pauli et Seitz venaient de résoudre une énigme qui datait du temps de Faraday (1791-1867), où l'on avait observé des charges positives se déplaçant dans la matière sans avoir idée de ce que c'était. Il s'agit en fait des trous se déplaçant dans la bande de valence. Pour la suite, nous nous intéresserons donc aux électrons se trouvant dans la bande de conduction, et aux trous de la bande de valence.
Comment envoyer ces électrons de la bande de valence vers la bande de conduction ? En utilisant le photon ! Le photon va percuter un électron de la bande de valence et créer une paire électron-trou, c'est-à-dire qu'il va laisser un trou dans la bande de valence et placer un électron dans la bande de conduction. Il s'agit d'un phénomène d'absorption car au cours de ce processus, le photon disparaît. Il a été transformé en paire électron-trou.
Evidemment le mécanisme inverse est possible : si on arrive à créer par un autre moyen une paire électron-trou, l'électron va quitter la bande de conduction pour se recombiner avec le trou dans la bande de valence, et émettre un photon. La longueur d'onde du photon émis correspondra à l'énergie de la bande interdite ( energy gap en anglais). Il y a donc une correspondance fondamentale entre la couleur du photon émis et l'énergie de la bande interdite.
figure6
Gap d'énergie et distance inter-atomiques des principaux semi-conducteurs
La Figure 6 montre l'énergie de la bande interdite pour différents matériaux. On constate que certains matériaux se retrouvent sur la même colonne, c'est-à-dire qu'ils ont la même distance inter-atomique. C'est le cas par exemple de l'Arséniure de Gallium (GaAs) et de l'Aluminure d'Arsenic (AlAs). Etant des « jumeaux cristallographiques », il sera aisé de les mélanger, les faire croître l'un sur l'autre. En revanche, ils ont des bandes d'énergie interdite très différente. A partir de ce graphique, on peut donc conclure quel semi-conducteur conviendra à la lumière que l'on veut produire. Ainsi, la lumière rouge sera émise par le Phosphure de Gallium (GaP). Pour aller dans l'infrarouge lointain, un mélange entre CdTe et HgTe est cette fois préconisé.
Le dopage et la jonction P-N
Nous venons de présenter la première brique de l'optoélectronique, à savoir l'énergie de la bande interdite. La deuxième brique qui va nous permettre de réaliser des composants optoélectroniques va être le dopage. Comme nous l'avons dit précédemment, un semi-conducteur, si on n'y ajoute pas des électrons, conduit aussi bien qu'un bout de bois (c'est-à-dire plutôt mal !). Pour peupler la bande de valence, nous allons utiliser le dopage.
Nous nous intéresserons aux éléments des colonnes III, IV et V de la classification périodique des éléments de Mendeleïev (une partie en est représentée Figure 7). Le numéro de la colonne correspond au nombre d'électrons se trouvant sur la dernière couche électronique. Ainsi les éléments de la colonne IV, dits tétravalents, comme le Carbone et le Silicium, possèdent IV électrons sur leur dernière couche. Dans la colonne III (éléments trivalents), nous trouverons le Bore, et dans la colonne V (éléments pentavalents) se trouve le Phosphore.

figure7
Dopage de type P et dopage de type N
Regardons ce qui se passe si on introduit un élément pentavalent dans un cristal de Silicium. On peut dire que le Phosphore, tel l'adolescent dans une cour d'école, veut à tout prix ressembler aux copains. Ainsi, le Phosphore va imiter le Silicium et construire des liaisons électroniques avec 4 voisins. Il va donc laisser un électron tout seul. Cet électron va aller peupler la bande de conduction. C'est ce qu'on appelle le dopage de type N. Le Phosphore joue le rôle de Donneur d'électrons.
Le raisonnement est le même pour des éléments trivalents comme le Bore. Ce dernier va mimer le comportement du Silicium en créant 4 liaisons électroniques. Pour cela, il va emprunter un électron à la structure de Silicium, consommant ainsi un électron dans la bande de valence. Il crée donc un trou dans la bande de valence. Le dopage est dit de type P. Le Bore joue le rôle d'Accepteur d'électrons.
Le dopage n'est pas un processus aisé à réaliser. A l'heure actuelle, nous n'avons toujours pas trouvé le moyen de doper efficacement certains semi-conducteurs (c'est le cas du diamant par exemple). Pour le Silicium (Si) et l'Arséniure de Gallium (GaAs), le dopage est en revanche bien maîtrisé.
On va alors pouvoir réaliser des jonctions P-N ( Figure 8). Il s'agit en fait de juxtaposer un matériau dopé P avec un matériau dopé N. Dans la zone dopée N, le Phosphore a placé de nombreux électrons dans la bande de conduction. La zone dopée P quant à elle possède de nombreux trous dans la bande de valence. Nous sommes ainsi en présence délectrons et de trous qui se « regardent en chiens de faïence ». Ils vont donc se recombiner. Ainsi, à l'interface, les paires électrons trous vont disparaître, et laisser seules des charges négatives dans la zone dopée P, et des charges positives dans la zone dopée N. Ces charges fixes (qui correspondant en fait aux atomes dopants ionisés) vont créer un champ électrique. Cette jonction P-N sera au cSur de très nombreux composants optoélectroniques.
figure8
Jonction P-N: les électrons de la zone N se recombinent avec les trous de la zone P, laissant des charges nues dans une zone baptisée zone de charge d'espace. Les charges fixes induisent un champ électrique.

Le Puits Quantique
Dernière brique de l'optoélectronique que nous présenterons : le puits quantique. Ce dernier peut être considéré comme le fruit du progrès technologique. Dans les années 70-80, les ingénieurs étudient l'Ultra-Vide, c'est-à-dire les gaz à très basse pression (10-13 atmosphère). Comme il s'agit d'un milieu extrêmement pur, bien vite on se rend compte, que cela reproduit les conditions primordiales dans lesquelles les matériaux ont été créés. Dans un tel milieu, on va alors pouvoir « jouer au bon dieu » et empiler des couches d'atomes, créer des structures artificielles qui n'existent pas dans la nature.
Typiquement, il va être possible de réaliser des sandwichs de matériaux, où par exemple de l'Arséniure de Gallium (GaAs) serait pris entre deux tranches d'un matériau qui lui ressemble, AlGaAs (nous avons vu précédemment que AlAs et GaAs sont miscibles). Sur la photo ( Figure 9), issue d'un microscope électronique nous permettant d'observer les atomes, on voit que ces matériaux n'ont aucun problème à croître l'un sur l'autre. La couche de GaAs ne mesure que 20 angströms.
figure9
Puits quantique. En haut, sa composition. Au milieu une photo au microscope électronique d'une telle structure. En bas, diagramme d'énergie du puits quantique, la forme des oscillations de l'électron a également été représentée
Examinons le comportement de l'électron dans un tel milieu. Le GaAs a plus tendance à attirer les électrons que AlGaAs. L'électron se trouve piégé dans un puits de potentiel. C'est alors qu'intervient la mécanique quantique, réinterprétant le puits de potentiel en « puits quantique ». L'électron est une onde, une onde prisonnière entre deux murs (les barrières de potentiel formées par l' AlGaAs). L'électron ne va avoir que certains modes d'oscillation autorisés, comme l'air dans un tuyau d'orgue qui ne va émettre que des sons de hauteur bien définie.
Techniquement, il nous est possible de créer à peu près n'importe quel type de potentiel, puisqu'on est capable de contrôler l'empilement des atomes. Par exemple, plus on élargit le puits quantique, plus il y a de modes d'oscillation possibles pour l'électron, et plus il y a de niveaux d'énergies accessibles à l'électron. On peut ainsi synthétiser la répartition de niveau d'énergies que l'on souhaite.
Nous avons à présent un bon nombre d'outils de base que nous a fournis la mécanique quantique : la structure de bandes, le dopage et la jonction P-N qui en découle, et pour finir, le puits quantique. Nous allons à présent voir comment ces concepts entrent en jeu dans les composants optoélectroniques.

La détection quantique
Le principe de la photo-détection quantique (utilisé dans tous les appareils photo numérique) est extrêmement simple : il s'agit, à l'aide d'un photon, de faire transiter l'électron entre un niveau de base, où il ne conduit pas l'électricité, et un niveau excité où il va la conduire. Le semi-conducteur pur peut par exemple faire office de photo-détecteur quantique ( Figure 10): à l'état de base, il ne conduit pas le courant, mais un photon peut créer, par effet photoélectrique, une paire électron-trou et placer un électron dans la bande de conduction, permettant le transport du courant.
figure10
Deux mécanismes de détection quantique. A gauche, on utilise la structure de bande d'un semi-conducteur. A droite, un puits quantique.
Un puits quantique peut également réaliser cette fonction ( Figure 10): les électrons se trouvent piégés dans le puits quantiques, car la barrière d'AlGaAs les empêche de sortir, mais par absorption d'un photon, les électrons vont avoir l'énergie leur permettant de sortir du piège et donc de conduire le courant.
L'effet Photovoltaïque
Le détecteur quantique le plus répandu est la cellule photovoltaïque. Elle est constituée d'une jonction P-N. Imaginons que des photons éclairent la structure. Dans la zone ionisée (appelée zone de charge d'espace), ils vont alors créer des paires électron-trou. Mais cette région possédant un champ électrique du fait des charges fixes, les électrons vont être attirés par le Phosphore, les trous par le Bore, ce qui va générer un courant électrique.
figure11
Cellule photovoltaïque. En haut, la jonction P-N reçoit des photons qui créent des paires électron-trou. En bas, diagramme d'énergie montrant les électrons de la bande de conduction tombant dans la zone N, et les trous de la bande de valence remontant dans la zone P.
On peut représenter ce mécanisme sur un diagramme d'énergie ( Figure 11). Le champ électrique présent au niveau de la jonction P-N provoque une courbure de la bande de valence et de la bande de conduction. Le photon va créer une paire électron-trou. L'électron va glisser le long de la pente de la bande de conduction, et se retrouver dans la zone dopée N, tandis que le trou, tel une bulle dans un verre de champagne, va remonter la bande de valence et se retrouver dans la zone dopée P.
Les caméras CCD
Techniquement, il existe des technologies pour synthétiser ces minuscules détecteurs par millions en une seule fois. Ces détecteurs ont changé notre vie quotidienne. En effet, au cSur de tous les appareils photo et caméscopes numériques se trouve une matrice CCD ( charge coupled devices). Il ne s'agit pas exactement de jonctions P-N, mais d'une myriade de transistors MOS. Néanmoins les concepts physiques mis en jeu sont tout à fait analogues. Il s'agit d'une couche semi-conductrice de Silicium séparée d'une couche métallique par une couche isolante d'oxyde. Lorsqu'un photon arrive dans la zone courbée du diagramme de bande (c'est là encore, la zone de charge d'espace), une paire électron-trou est créée, les électrons vont s'accumuler à l'interface entre le semi-conducteur et l'isolant, il vont alors pouvoir être « évacués » par les transistors qui vont récupérer les « tas d'électrons » et se les donner, comme des pompiers se passant des bacs d'eau (d'où leur nom). Les matrices CCD actuelles ont des caractéristiques vertigineuses, contenant aisément 10 millions de pixels mesurant chacun 6 mm x 6 mm.
figure12
Matrice CCD. A gauche, diagramme d'énergie d'un transistor MOS (Métal Oxide Silicium). A droite, photo d'une matrice CCD
Les détecteurs infrarouges
Un deuxième type de détecteurs très importants sont les détecteurs infrarouge, notamment ceux détectant les longueurs d'onde comprises entre 3 et 5 mm, et entre 8 et 12 mm. Comme nous l'avons mentionné au début, le corps humain à 37°C rayonne énormément de lumière, sur toute une gamme de longueurs d'onde (représentée en bleu sur la Figure 13), centrée autour de 10 mm. Mais l'atmosphère ne laisse pas passer toutes les longueurs d'onde (la courbe rouge représente la transmission de l'atmosphère). Et justement entre 3 et 5 mm, et entre 8 et 12 mm, elle a une « fenêtre de transparence ». En particulier, à plus haute altitude, un avion peut voir à plusieurs centaines de kilomètres dans la bande 8-12 mm. Un autre intérêt de détecter cette gamme de longueur d'onde est qu'elle correspond à l'absorption de certains explosifs qui seraient alors détectables.
figure13
Spectre de transmission de l'atmosphère (courbe rouge), et spectre d'émission du corps humain, c'est-à-dire d'un corps noir à 37°C (courbe bleue)
Comment réaliser ces détecteurs autour de 5 et de 10 mm (c'est-à-dire ayant un gap d'énergie de 0,1 à 0,2 eV)? La Figure 6 nous indique que le couple CdTe (Tellure de Mercure) - HgTe (Tellure de Cadmium) est un bon candidat. Notons au passage que la France, grâce notamment aux laboratoires du CEA et de l'ONERA) est leader mondial dans ce domaine. Avec de tels détecteurs, il devient possible de voir des avions furtifs, indétectables par radar. Des applications existent aussi dans le domaine médical, où ces capteurs permettent de déceler certaines variations locales de température sur une simple image. Il est également possible de détecter le niveau de pétrole à l'intérieur d'un conteneur, l'inertie thermique du pétrole différant de celle de l'air.
figure14
Exemples d'images prises par des détecteurs infrarouges (source : www.x20.org)
Les cellules solaires
Dernier type de détecteur que nous examinerons : les cellules solaires, qui transforment la lumière en électricité. Le matériau roi (parce que le moins cher) dans ce domaine est le Silicium. Malheureusement son rendement quantique n'est pas bon (15%), c'est-à-dire que le Silicium absorbe très bien le rayonnement à 1 eV, tandis que le soleil émet essentiellement entre 2 à 3 eV. Des recherches sont actuellement menées afin de développer des matériaux absorbant plus efficacement dans ces gammes d'énergie. Ces recherches sont extrêmement importantes pour les nouvelles sources d'énergie.

Les émetteurs de lumière
Diodes électroluminescentes
On se rappelle qu'en se recombinant, les paires électron-trous créent un photon. Réaliser un émetteur de lumière est donc possible à partir d'un puits quantique ( Figure 15). Ce dernier confine les électrons. Prenons, comme précédemment, le cas d'un puits quantique de GaAs « sandwiché » entre deux domaines d'AlGaAs. Cette fois, nous dopons N l'AlGaAs se trouvant d'un côté du puits, et P l'AlGaAs se trouvant de l'autre côté. Si on fait passer du courant dans cette structure, les électrons de la zone dopée N vont tomber dans le puits quantique, les trous de la zone dopée P vont monter dans le puits de la zone de valence. Une fois dans le puits quantique, électrons et trous vont se recombiner et émettre un photon. Ce composant est appelé Diode Electroluminescente (LED). Ce n'est ni plus ni moins qu'un photo-détecteur dans lequel on a forcé le courant à passer.
figure15
Diagramme d'énergie d'une diode électroluminescente. Trous de la zone P et électrons de la zone N vont être piégés dans le puits quantique et se recombiner en émettant de la lumière
Les LED remplissent, elles aussi notre quotidien. Elles ont un énorme avantage sur d'autres type d'éclairage : le processus de création de photon d'une LED est extrêmement efficace. En effet, dans une LED chaque électron donne un photon. Ainsi avec un courant d'un ampère, on obtient une puissance lumineuse d'environ un Watt, alors qu'une ampoule ne donnera que 0,1W pour le même courant. L'utilisation plus répandue des LED pour l'éclairage aura un impact extrêmement important pour les économies d'énergie et l'environnement. A l'heure actuelle, elles sont utilisées dans nos télécommandes, les panneaux d'affichages, les feux de signalisation.
Depuis quelques temps les diodes rouges, orange et vertes existent. La diode bleue, plus récemment apparue a connue une histoire insolite. En 1974, des ingénieurs se penchent sur le problème de la réalisation d'une telle diode, et trouvent qu'un matériau possède le gap d'énergie adéquat (3-4 eV) : le Nitrure de Gallium (GaN). Ils vont alors chercher à le doper... pendant 10 ans... sans succès. En 1984, un grand théoricien soutient, démonstration à l'appui, qu'il n'est théoriquement pas possible de doper un tel semi-conducteur. Toutes les équipes arrêtent alors progressivement leurs recherches sur le sujet... toutes, sauf une. Celle du Dr. Nakamura (qui sans doute n'avait pas lu l'article de l'éminent théoricien) de la société Japonaise Nichia. En 1993, il trouve que le Magnésium (Mg) dope le Nitrure de Gallium ! Dix ans après, sa découverte a révolutionné le marché de l'optoélectronique. En effet, avec les autres couleurs de LED, il est à présent possible de réaliser d'immenses écrans publicitaires...
Diodes lasers
Etudions à présent l'émission stimulée. Nous avons vu que le semi-conducteur pouvait absorber un photon, qu'il pouvait également en émettre s'il possède un électron dans sa bande de conduction. En 1917, Albert Einstein s'aperçoit qu'il manque un mécanisme dans cette description de l'interaction entre la lumière et la matière. Par une démarche purement théorique, il va découvrir un nouveau phénomène : l'émission stimulée ( Figure 16).
Dans l'émission stimulée, l'électron est dans l'état excité. Arrive alors un photon, qui va stimuler la désexcitation de l'électron. Cette désexcitation va naturellement s'accompagner de l'émission d'un autre photon, dit photon stimulé. Si on se trouve dans un matériau où beaucoup d'électrons sont excités, un photon va alors pouvoir donner 2, puis 4, puis 8 ... photons ! Ce phénomène est appelé l'amplification optique.
figure16
Diagramme des mécanismes d'absorption, d'émission spontanée, et d'émission stimulée
Il est alors possible de réaliser un LASER. Pour cela, il suffit de placer deux miroirs aux extrémités de l'amplificateur optique. La lumière va être amplifiée lors d'un premier passage, une partie va être émise en dehors de la cavité, l'autre partie va être réfléchie et refaire un passage dans le milieu amplificateur. La même chose se produit sur le deuxième miroir. Si après un tour on a plus d'énergie qu'au départ, nous sommes face à un phénomène d'avalanche où le nombre de photons créés va croître très rapidement. Le système se met à osciller, c'est l'oscillation LASER.
John von Neumann, l'inventeur de l'ordinateur, prévoit que les semi-conducteurs devraient permettre de réaliser des lasers. En effet en partant d'un puits quantique et en y plaçant beaucoup d'électrons et de trous, nous allons obtenir notre milieu amplificateur. En plaçant des miroirs aux extrémités du puits quantique, on obtient alors un laser ( Figure 17). Le laser à semi-conducteur sera découvert 50 ans après, et par 3 laboratoires différents (General Electric, IBM et Bell Labs) en l'espace de 10 heures !

figure17
Schéma d'une diode laser. Le milieu à gain est constitué par la jonction P-N. A ses extrémités des miroirs forment la cavité, et laissent sortir un faisceau laser unidirectionnel
L'intérêt du laser à semi-conducteur est qu'on peut concentrer toute la puissance lumineuse sur un fin pinceau lumineux. Là encore, les applications sont nombreuses : pointeurs, lecteur de CD, télécommunications... Revenons un instant sur l'importance des matériaux émettant dans le bleu (le Nitrure de Gallium). Le laser bleu va en effet avoir des retombées importantes dans le domaine des disques lasers. Le principe du lecteur de disque est d'envoyer un laser sur la surface du disque qui réfléchit (ou non) la lumière, lumière qui est alors lue par un détecteur quantique. La surface du disque est criblée de trous stockant les bits d'information. Il se trouve que la dimension minimale d'un faisceau laser correspond à la longueur d'onde qu'il émet. Ainsi la tâche d'un laser rouge est de 0,8 mm, tandis que celle d'un faisceau bleu est de 0,4 mm. On pourra donc lire 4 fois plus d'information avec un laser bleu Les diodes bleues vont donc progressivement (et rapidement) remplacer les diodes rouges des lecteurs de disques.
La lumière d'un laser va également pouvoir être envoyée à l'intérieur d'une fibre optique, qui est une structure guidant la lumière au cSur d'un guide en verre (silice) de 4 mm de diamètre. La fibre optique permet alors de transporter énormément d'information extrêmement rapidement. A l'heure actuelle, les fibres optiques permettent d'envoyer en un dixième de seconde tout le contenu de l'Encyclopedia Universalis à 3000 km ! Cette révolution technologique, fruit de l'optoélectronique, est à la base du succès d'Internet.
Les nouvelles frontières
L'optoélectronique est un des domaines scientifiques les plus effervescents à l'heure actuelle, et de nombreuses technologies encore balbutiantes semblent très prometteuses dans un proche future : il s'agit par exemple des cristaux photoniques, des oscillateurs paramétriques optiques, de la nano-optique,... Nous nous intéresserons ici aux nouvelles longueurs d'ondes ainsi qu'au domaine des attosecondes.
Les ondes Térahertz
L'optoélectronique investit aujourd'hui de nouvelles longueurs d'onde, et ne se cantonne plus au domaine du visible et de l'infrarouge. Ces ondes appartiennent à la famille des ondes électromagnétiques ( Figure 18), qui renferme également, les ondes radio, les ondes radars et micro-ondes,... Entre les ondes radio et les ondes optiques, se trouve le domaine des ondes dites Térahertz (THz), qui jusqu'à peu ne disposaient pas de sources efficaces. L'optoélectronique développe actuellement de nouvelles sources lasers dans ce domaine, resté pendant longtemps une terra incognita.

figure18
Le spectre des ondes électromagnétiques
De telles sources permettront de développer de nouveaux systèmes de sécurité, car ils permettront notamment de voir à travers les vêtements. En effet, même au travers de matériaux opaques, les photons pénètrent, sur une longueur de quelques longueurs d'onde. Dans le cas des ondes Térahertz, la longueur d'onde est de 300 mm, le photon va pénétrer un matériau opaque sur plusieurs millimètres ! L'onde Térahertz pourra ainsi traverser les vêtements. La Figure 19 montre comment un couteau caché par un journal a pu être détecté par de l'imagerie Térahertz.
figure19
Image d'une scène dans le visible (à gauche) et dans les Térahertz (à droite). La grande longueur d'onde des ondes Térahertz permet de traverser les vêtements et les journaux.
(Jefferson Lab : www.jlab.org)

Les attosecondes
Une autre percée réalisée par l'optoélectronique concerne l'étude des temps très courts. Le domaine des attosecondes est désormais accessible à l'expérience. Une attoseconde ne représente que 0,000 000 000 000 000 001 seconde (10-18 seconde)! Il y a autant d'attosecondes dans une seconde que de secondes écoulées depuis la création de l'univers.
Pour créer des impulsions aussi courtes, il faut des ondes ayant des fréquences très élevées. L'impulsion la plus courte qu'on puisse faire avec une onde consistera à ne prendre qu'une seule oscillation de l'onde. L'optoélectronique nous propose des techniques qui permettent de ne découper qu'une seule oscillation du champ électromagnétique. Si on prend de la lumière visible (de fréquence 1015 Hz), on est capable de découper une tranche de 10-15 seconde (une femtoseconde). On peut aujourd'hui aller encore plus loin, et atteindre le domaine des attosecondes.

La Figure 20 montre en fonction du temps les plus petites durées atteignables par l'électronique et par l'optoélectronique. L'électronique, ayant des fréquences limitées à quelques gigahertz (GHz) est actuellement limitée, tandis que l'optique, avec des photons aux fréquences bien plus élevées permet de sonder des durées bien plus faibles.
figure20
Evolution des plus petites durées mesurables par l'électronique et l'optoélectronique dans les 40 dernières années
L'électron met environ 150 attosecondes pour « faire le tour » de l'atome d'Hydrogène. Nous devrions donc avoir d'ici peu les techniques permettant d'observer ce mouvement ! On retrouve le cercle vertueux que nous avions évoqué au début : la science fondamentale a fourni des technologies, et ces technologies, en retour, fournissent aux sciences fondamentales des possibilités d'observer de nouveaux domaines du savoir et de la connaissance de l'univers.

 

  VIDEO       CANAL  U         LIEN 

 
 
 
 

SUIVRE LES RÉACTIONS ENTRE LES ATOMES EN LES PHOTOGRAPHIANT AVEC DES LASERS

 

 

 

 

 

 

 

SUIVRE LES RÉACTIONS ENTRE LES ATOMES EN LES PHOTOGRAPHIANT AVEC DES LASERS

"Les progrès de l'optique ont conduit à des avancées significatives dans la connaissance du monde du vivant. Le développement des lasers impulsionnels n'a pas échappé à cette règle. Il a permis de passer de l'ère du biologiste-observateur à l'ère du biologiste-acteur en lui permettant à la fois de synchroniser des réactions biochimiques et de les observer en temps réel, y compris in situ. Ce progrès indéniable a néanmoins eu un coût. En effet, à cette occasion le biologiste est (presque) devenu aveugle, son spectre d'intervention et d'analyse étant brutalement réduit à celui autorisé par la technologie des lasers, c'est à dire à quelques longueurs d'onde bien spécifiques. Depuis peu, nous assistons à la fin de cette époque obscure. Le laser femtoseconde est devenu "" accordable "" des RX à l'infrarouge lointain. Il est aussi devenu exportable des laboratoires spécialisés en physique et technologie des lasers. Dans le même temps, la maîtrise des outils de biologie moléculaire et l'explosion des biotechnologies qui en a résulté, ont autorisé une modification à volonté des propriétés - y compris optiques - du milieu vivant. Une imagerie et une spectroscopie fonctionnelles cellulaire et moléculaire sont ainsi en train de se mettre en place. L'exposé présentera à travers quelques exemples, la nature des enjeux scientifiques et industriels associés à l'approche "" perturbative "" du fonctionnement des structures moléculaires et en particulier dans le domaine de la biologie. "

Texte de la 211e conférence de l’Université de tous les savoirs donnée le 29 juillet 2000.
La vie des molécules biologiques en temps réel : Laser et dynamique des protéines
par Jean-Louis Martin
En aval des recherches autour des génomes, alors que le catalogue des possibles géniques et protéiques est en voie d’achèvement, nous sommes entrés dans l’ère fonctionnelle qui doit nous conduire à comprendre comment toutes les molécules répertoriées interviennent pour « faire la vie ». Le profit qui sera fait de cette masse d’informations, dépend de notre capacité à intégrer ces données moléculaires dans des schémas fonctionnels sous-tendant la constitution et l’activité des cellules voire des organes et des organismes.
Cette intégration va dépendre de domaines de recherche très variés, différents de ceux qui traditionnellement ont fait progresser la biologie des systèmes intégrés.
Au niveau cellulaire, l’approche fonctionnelle est déjà très avancée, en partie parce qu’elle s’appuie sur des compétences, des technologies et des concepts, largement communs à ceux développés par la génétique et la biologie moléculaire. Elle est toutefois, à ce jour, encore loin d’aboutir à une mise en cohérence du rôle fonctionnel des différents acteurs dont elle identifie le rôle au sein de la cellule : récepteurs, canaux ioniques, messagers, second messagers… Les progrès dans ce domaine vont être intimement liés à notre capacité à développer des outils autorisant à la fois un suivi in situ des différents acteurs, et une manipulation à l’échelle de la molécule.
Les développements technologiques spectaculaires dans le domaine des lasers impulsionnels a déjà permis le développement d’une nouvelle microscopie en trois dimensions : la microscopie confocale non linéaire. Associée à la construction de protéines chimères fluorescentes, cet outil a déjà permis de progresser significativement dans la localisation d’une cible protéique ou dans l’identification de voies de trafic intracellulaire.
Cependant, le décryptage in situ et in vivo du rôle fonctionnel des différents acteurs, en particulier protéique, ou plus encore, la compréhension des mécanismes sous-jacents, constituent des défis que peu d’équipes dans le monde ont relevés à ce jour. Il s’agit ici d’associer des techniques permettant de donner un sens à une cascade d’évènements qui s’échelonnent sur des échelles de temps allant de la centaine de femtoseconde1 à plusieurs milliers de secondes.

Le fonctionnement des protéines en temps réel
Le fonctionnement des macromolécules biologiques – protéines, acides nucléiques – est intimement lié à leur capacité à modifier leurs configurations spatiales lors de leur interaction avec des entités spécifiques de l’environnement, y compris avec d’autres macromolécules. Le passage d’une configuration à une autre requiert en général de faibles variations d’énergie, ce qui autorise une grande sensibilité aux variations des paramètres de l’environnement, associée à une dynamique interne des macromolécules biologiques s’exprimant sur un vaste domaine temporel.
Dans une première approche, on peut considérer qu’une vitesse de réaction biologique est la résultante du « produit » de deux termes: une dynamique intrinsèque des atomes et une probabilité de transition électronique. C’est en général ce dernier facteur de probabilité qui limite la vitesse d’une réaction. Une réaction biochimique est généralement lente non pas comme conséquence d’évènements intrinsèquement lents, mais comme le résultat d’une faible probabilité avec laquelle certains de ces évènements moléculaires peuvent se produire.

Plus précisément, une réaction biologique qui implique, par exemple, une rupture ou une formation de liaison, est tributaire de deux classes d’évènement : d’une part un déplacement relatif des noyaux des atomes et d’autre part une redistribution d’électrons parmi différentes orbitales. Ces deux catégories d’évènements s’expriment sur des échelles de temps qui leur sont propres et qui dépendent de la structure électronique et des masses atomiques des éléments constituant la molécule. Ainsi la dynamique des atomes autour de leur position d’équilibre est, en première approximation, celle d’oscillateurs harmoniques faits de masses ponctuelles couplées par des forces de rappels. Dans le cas des macromolécules biologiques, les milliers d’atomes que comporte le système évoluent sur une hyper-surface d’énergie dont la dimension est déterminée par le nombre de degrés de liberté de l’ensemble du complexe.
Le « travail » que doit effectuer une protéine est de nature très variée : catalyse dans le cas des enzymes, transduction de signal dans le cas de récepteurs, transfert de charges de site à site, transport de substances … mais il existe une caractéristique commune dans le fonctionnement de ces protéines : la sélection de chemins réactionnels spécifiques au sein de cette surface de potentiel. À l’évidence le système biologique n’explore pas l’ensemble de l’espace conformationnel : le coût entropique serait fatal à la réaction… et à l’organisme qui l’héberge.
L’identification de ce chemin réactionnel au sein de l’édifice constitue l’objectif essentiel des expériences de femto-biologie.
L’approche expérimentale : produire un séisme moléculaire et le suivre par stroboscopie laser femtoseconde
Dans une protéine, qui comporte des milliers d’atomes, l’identification des mouvements participant à la réaction moléculaire n’est pas chose aisée.
Comment réussir à caractériser la dynamique conduisant à une conformation intermédiaire qui est elle-même à la fois très fugace et peu probable ?
La cinétique de ces mouvements est directement déterminée par les modes de vibration de la protéine. On peut donc s’attendre à des mouvements dans les domaines femtoseconde et picoseconde2. Pour espérer avoir quelques succès dans cette investigation, il est par ailleurs impératif d’utiliser un système moléculaire accessible à la fois à l’expérimentation et à la simulation, la signature spectrale de la dynamique des protéines n’apportant que des informations indirectes. De plus, la réaction étudiée doit pouvoir être induite de manière « synchrone » pour un ensemble de molécules. Il est donc nécessaire de perturber de manière physiologique un ensemble moléculaire dans une échelle de temps plus courte que celle des mouvements internes les plus rapides, donc avec une impulsion femtoseconde.

Cette approche « percussionnelle » est commune à la plupart des domaines de recherche utilisant des impulsions femtosecondes. La biologie ne se distingue sur ce point, que dans l’adaptation de la perturbation optique pour en faire une perturbation physiologique. Le problème est naturellement résolu dans le cas des photorécepteurs pour lesquels le photon est « l’entrée » naturelle du système. Ceci explique les nombreux travaux en photosynthèse : transfert d’électron dans les centres réactionnels bactériens, transfert d’énergie au sein d’antennes collectrices de lumière dans les bactéries, mais aussi les études transferts de charges au sein d’enzyme de réparation de l’ADN ou responsable de la synchronisation des rythmes biologiques avec la lumière solaire, ainsi que les travaux sur les premières étapes de la vision dans la rhodopsine.
Il existe par ailleurs des situations favorables où la protéine comporte un cofacteur optiquement actif qui peut servir de déclencheur interne d’une réaction: c’est la cas des hémoprotéines comme l’hémoglobine que l’on trouve dans les globules rouges ou les enzymes impliquées dans la respiration des cellules comme la cytochrome oxydase. Dans ces hémoprotéines il est possible de rompre la liaison du ligand (oxygène, NO ou CO) avec son site d’ancrage dans la moléculen par une impulsion lumineuse femtoseconde.On se rapproche ici des conditions physiologiques, la transition optique permettant de placer le site actif de l’hémoprotéine dans un état instable entrainant la rupture de la liaison site actif-ligand en moins de 50 femtosecondes. Cette méthode aboutit à la synchronisation de l’ensemble des réactions d’un grand nombre de molécules. Il est alors possible de suivre leur comportement pendant la réaction et d’identifier les changements de conformation lors du passage des cols énergétiques. On peut faire une analogie sportive : en suivant l’évolution de la vitesse d’un « peloton » de coureurs cyclistes lors d’une étape du tour de France, on peut retracer le profil de cols et de vallées de l’étape, à condition que les coureurs partent au même instant. Pour un « peloton » de molécules, c’est le Laser femtoseconde qui joue le rôle du « starter » de l’étape.
Le paysage moléculaire dans les premiers instants d’une réaction : la propagation d’un séisme moléculaire
Dans les premiers instants qui suivent la perturbation (dissociation de l’oxygène de l’hème, par exemple), les premiers évènements moléculaires resteront localisés à l’environnement proche du site actif. À une discrimination temporelle dans le domaine femtoseconde, correspond donc une discrimination spatiale au sein de la molécule. Il devient ainsi possible de suivre la propagation du changement de conformation au sein de la molécule. Pour donner un ordre de grandeur, celui-ci s’effectue en effet en première approximation à la vitesse d’une onde acoustique ( environ 1200m/s) qui, traduite à l’échelle de la molécule, est 1200x10-12 soit 12 Å par picoseconde. En 100 fs la perturbation initiale est donc essentiellement localisée au site actif. Nous sommes au tout début du séisme moléculaire. En augmentant progressivement le retard de l’impulsion analyse par rapport à l’impulsion dissociation, il est possible de visualiser les chemins de changement conformationnel de la protéine et d’identifier les mouvements associés au fonctionnement de la macromolécule.
Ce simple calcul montre que la spectroscopie femtoseconde se distingue de manière fondamentale des techniques à résolution temporelle plus faible: il ne s’agit plus d’ obtenir des constantes de réaction avec une meilleur précision, mais l’intérêt majeure des « outils femtosecondes » provient du fait que pour la première fois il est possible de décomposer les évènements à l’origine de ces réactions ou induits par la réaction.
Cette discrimination spatiale associée à une résolution temporelle femtoseconde a un autre intérêt qui est de « simplifier » un système complexe sans avoir à utiliser une approche réductionniste (par coupure chimique) qui peut conduire le biophysicien moléculaire à étudier un sous-ensemble d’un complexe moléculaire dont les propriétés n’auront que peu de choses à voir avec la fonction biologique de l’ensemble.

La compréhension d’un automate moléculaire
Dès le début des années 80, l’approche percussionnelle dans le régime femtoseconde a été développée dans le domaine de la dynamique fonctionnelle des hémoprotéines et en particulier pour l’étude de l’hémoglobine. Cette protéine qui comporte quatre sites de fixation de l’oxygène, les hèmes, est capable d’auto-réguler sa réactivité à l’oxygène : c’est une régulation dite « allostérique ». La régulation allostérique de l’hémoglobine se traduit par le fait que la dissociation ou la liaison d’une molécule d’oxygène entraine une modification d’un facteur 300 de l’affinité des autres hèmes pour l’oxygène. La structure de l’hémoglobine est connue à une résolution atomique à la fois dans l’état ligandé (ou oxyhémoglobine) et dans l’état déligandé (désoxyhémoglobine). De ces travaux on sait que l’hémoglobine possède deux structures stables qui lui confèrent soit une haute affinité (état R) soit une basse affinité (état T) pour l’oxygène. Il s’agissait de déterminer le mécanisme, qui partant de la rupture d’une simple liaison chimique entre oxygène et fer induit un changement conformationel de l’ensemble du tétramère conduisant à distance à une modulation importante de l’affinité des autres sites de liaison.
Le débat de l’époque concernant la transition allostérique dans l’hémoglobine n’avait pas encore décidé du choix entre cause et conséquence au sein de l’édifice moléculaire. Nous connaissions les deux structures à l’équilibre avec une résolution atomique, grâce aux travaux de Max Perutz. Il était connu, même si cela n’était pas encore unanimement admis, que la dissociation de l’oxygène de l’hème entrainait « à terme » un changement conformationnel de ce dernier par déplacement de l’atome de fer en dehors du plan des pyrroles. Deux modèles s’opposaient: ce déplacement était-il la cause ou la conséquence du changement conformationnel impliquant la structure tertiaire et quaternaire de l’hémoglobine ? Dans la première hypothèse, cet évènement était crucial puisque le déclencheur de la communication hème-hème au sein de l’hémoglobine, c’est à dire le processus qui traduisait une perturbation très locale ( rupture d’une liaison chimique en un « basculement » de la structure globale vers un autre état). En discriminant temporellement les évènements consécutifs à la rupture de la liaison ligand-fer, il a été montré que le premier évènement est le déplacement du fer en dehors du plan de l’hème en 300 femtosecondes. Cet événement ultra-rapide constitue une étape cruciale dans la réaction de l’hémoglobine avec l’oxygène. Il contribue à donner à l’hémoglobine les propriétés d’un transporteur d’oxygène en autorisant une communication d’un site de fixation de l’oxygène à un autre. Un événement excessivement fugace et à l’échelle nanoscopique a donc retentissement au niveau des grandes régulations physiologiques : ici l’oxygénation des tissus.

À ce jour, l’essentiel du scénario consécutif à cet événement initial, qui conduit à la communication hème-hème, reste à découvrir. Pour cela il est nécessaire de faire appel à des outils permettant de suivre la propagation de ce « séisme initial » au sein de l’édifice et d’identifier ainsi les mouvements atomiques contribuant au chemin réactionnel. Des nouveaux outils restent à découvrir, certains sont en cours de développement : diffraction RX femtoseconde, spectroscopie infra-rouge dans le domaine THz sont probablement les outils adaptés.
La catalyse enzymatique : la caractérisation des états de transition
Dans son commentaire sur le prix Nobel en « femtochimie », l’éditeur de Nature3 écrit dans le dernier paragraphe : « It seems inevitable that ultrafast change in biological systems will receivre increasing attention ».
Sur quoi se fonde une telle certitude ?
Pour une part, sur une réflexion qui date d’un demi-siècle : celle de Linus Pauling qui était essentiellement de nature théorique. Pauling a proposé que le rôle des enzymes est d’augmenter la probabilité d’obtenir un état conformationnel à haute énergie très fugace ou, en d’autres termes, de stabiliser l’état de transition c’est-à-dire l’état conformationnel conduisant à la catalyse. En d’autres termes, il s’agit d’optimiser l’allure du « peloton » au sommet du Tourmalet. Dans les enzymes comme pour les coureurs, c’est à cet endroit que l’avenir de la réaction se joue, et c’est ici que les enzymes interviennent !
Le préalable à la compréhension du fonctionnement des enzymes est donc la caractérisation des états de transition. Une démonstration expérimentale indirecte a été la production d’anticorps catalytiques- ou abzymes- par Lerner et coll. dans le début des années 80. En effet, suivant le raisonnement de Pauling, les anti-corps « reconnaissent » leur cible épitopique dans leur état fondamental ( c’est à dire au minimum de la surface de potentiel, dans la vallée énergétique) alors que les enzymes reconnaissent leur cible, le substrat, dans son état de transition, au col énergétique. Les anticorps deviendont catalytiques si, produits en réponse à la présence d’une molécule mimant l’état de transition d’un substrat, ils sont mis en présence de ce dernier... : ça marche... plus ou moins bien, mais ceci est une autre histoire.

La caractérisation de cet état de transition est donc un préalable à la compréhension des mécanismes de catalyse mais aussi à la conception d’effecteurs modifiant la réactivité. Dans une protéine, qui comporte des milliers d’atomes, l’identification des mouvements participant à la réaction moléculaire n’est pas chose aisée, l’interprétation des spectres ne pouvant plus être directe, comme dans le cas des molécules diatomiques. La cinétique de ces mouvements est directement déterminée par les modes de vibration de la protéine. On peut donc, ici aussi, s’attendre à des mouvements dans le domaine femtoseconde.
Il existe une classe d’enzymes pour laquelle la structure de l’état de transition est connue grace à des approches théoriques : ce sont les protéases dont on sait qu’elles favorisent la configuration tétrahédrique du carbone de la liaison peptidique.Cette connaissance de l’état de transition a autorisé une approche rationnelle dans la conception de molécules « candidat-médicament »: les inhibiteurs de protéase. Il n’est donc pas surprenant qu’à ce jour, les seuls médicaments sur le marché -et non des moindres- issus d’une démarche scientifique véritablement rationnelle soient des inhibiteurs de protéases ou de peptidases : inhibiteurs de l’enzyme de conversion (IEC), inhibiteurs de protéase du virus HIV, base de « la tri-thérapie ».

En donnant l’espoir de photographier les états de transition, la femto-biologie ouvre la perspective d’une démarche rationnelle dans la conception d’inhibiteurs spécifiques. Avant qu’une telle possibilité ne soit offerte, il reste néanmoins à surmonter de sérieuses difficultés: le développement d’une méthode plus directe de visulisation des conformations, en particulier par diffraction RX femtoseconde, mais aussi la mise au point de méthodes de synchronisation à l’échelle femtoseconde de réactions enzymatiques au sein d’un cristal.
Filmer les molécules à l’échelle femtoseconde a permis de mettre en évidence un comportement inattendu d’enzymes de la respiration : l’utilisation de mouvements de balancier des atomes au profit d’une grande efficacité de réaction
La vie de tous les organismes aérobies – dont nous sommes – dépendent d’une classe d’enzyme : les oxydases et plus particulièrement pour les eucaryotes, de cytochromes oxydases. Cette enzyme est la seule capable de transférer des électrons à l’oxygène en s’auto-oxydant de manière réversible. Elle est responsable de la consommation de 90 % de l’oxygène de la biosphère.
Un dysfonctionnement de cette enzyme a un effet délétère sur la cellule, en particulier par production du très toxique radical hydroxyle °OH. Au delà d’un certain seuil de production, les systèmes de détoxification sont débordés. Le stress oxydatif qui en résulte peut se traduire par diverses pathologies. On retrouve une telle situation en période post-ischémique dans l’infarctus du myocarde, mais aussi dans des maladies neurodégénératives ou lors du vieillissement.

Cette enzyme catalyse la réduction de l’oxygène en eau à partir d’équivalents réducteur cédés par le cytochrome c soluble. Cette réduction à quatre électrons est couplée à la translocation de quatre protons à travers la membrane mitochondriale. L’oxygène et ses intermédiaires restent liés à un hème (l’hème a3) dans un site très spécifique. Ce site comprend, outre l’heme a3, un atome de cuivre, le CuB. Cet atome joue un rôle important dans le contrôle de l’accès des ligands vers ce site ou vers le milieu. Des ligands diatomiques (O2, NO, CO) peuvent établir des liaisons soit avec le Fer de l’hème a3, soit avec le CuB, mais le site actif parait trop encombré pour accommoder deux ligands.
Des études récentes en dynamique femtoseconde ont permis d’élucider le mécanisme de transfert de ligand (monoxyde de carbone (CO)), de l’hème a3 vers le CuB. Le CO est une molécule de transduction du signal produite en faible quantité par l’organisme, qui inhibe la cytochrome c oxidase par formation d’un complexe heme a3-CO stable. En suivant cette réaction par spectroscopie femtoseconde, il a été possible de mettre en évidence un mécanisme très efficace, et en toute sécurité, de transfert d’une molécule dangereuse pour la vie cellulaire. L’enzyme libère la molécule de CO d’un premier site en lui donnant une impulsion qui oriente sa trajectoire vers le site suivant en la protégeant de collisions avec l’environnement.

Dans ce dernier exemple l’enzyme a atteint un degré de sophistication supplémentaire : outre le franchissement du col énergétique de façon optimale, l’enzyme évite la diffusion d’une molécule dangereuse pour la survie cellulaire, tout en l’utilisant comme messager très efficace !
Vers le décloisonnement des disciplines
Le cinema moléculaire n’en est qu’à ses débuts. Il est essentiellement muet. La filmothèque est à peine embryonnaire, le nombre de plan-séquences ne permet pas encore de révéler un véritable scénario. L’essentiel est donc à venir.
Reconstruire le film des évènements conduisant à la vie cellulaire, les intégrés dans des schémas fonctionnels, va donc constituer l’objectif des prochaines décennies.

Cette intégration va dépendre de domaines de recherche très variés, différents de ceux qui traditionnellement ont fait progresser la biologie de la cellule ou des organes. Le transfert des outils de la physique, et au-delà, l’invention de nouveaux outils, y compris moléculaires, l’émergence de nouveaux concepts, va nécessiter le développement de synergies entre acteurs évoluant jusqu’ici dans des sphères disjointes : biologistes cellulaire et moléculaire, physiciens, chimistes, bioinformaticiens… Dans ce cadre il sera utile de créer les conditions permettant de rassembler en un seul site, l’ensemble des compétences.
1 Femtoseconde : le milliardième de millionième de seconde.
2 Picoseconde : millioniène de millionième de seconde = 1000 femtosecondes.
3 Vol 401,p. 626,14 octobre 1999.

 

   VIDEO       CANAL  U         LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google