ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

DIABETE

 

Paris, 29 janvier 2012

Le gardien de l'horloge biologique en cause dans le diabète
Depuis quelques années, on sait que les troubles du sommeil augmentent le risque de devenir diabétique. Une équipe franco-britannique coordonnée par Philippe Froguel du laboratoire Génomique et maladies métaboliques (CNRS /Université Lille 2/Institut Pasteur de Lille, Fédération de recherche EGID) (1), en collaboration avec l'équipe de Ralf Jockers (Institut Cochin, CNRS/Inserm/Université Paris Descartes, Paris), vient d'établir la responsabilité d'un gène clé de la synchronisation du rythme biologique dans le diabète de type 2. Les chercheurs lillois ont montré que des mutations du gène du récepteur de la mélatonine, l'hormone de la nuit qui induit le sommeil, augmentent près de 7 fois le risque de développer un diabète. Publiés le 29 janvier 2012 dans Nature Genetics, ces travaux pourraient déboucher sur de nouveaux médicaments pour soigner ou prévenir cette maladie métabolique.
Le diabète le plus fréquent est celui de type 2. Caractérisé par un excès de glucose dans le sang et une résistance croissante à l'insuline, il touche 300 millions de personnes dans le monde, dont 3 millions en France. Ce chiffre devrait doubler dans les prochaines années du fait de l'épidémie d'obésité et la disparition des modes de vie ancestraux. Lié à une alimentation riche en graisses et glucides, ainsi qu'au manque d'activité physique, on sait aussi que certains facteurs génétiques peuvent favoriser son apparition. Par ailleurs, plusieurs études ont montré que des troubles de la durée et la qualité du sommeil sont aussi des facteurs à risque importants. Par exemple, les travailleurs faisant les « trois huit » ont plus de risques de développer la maladie. Jusqu'à présent, aucun mécanisme reliant le rythme biologique et le diabète n'avait été décrit.

Les chercheurs se sont intéressés au récepteur d'une hormone appelée mélatonine, produite par la glande épiphyse (2)  lorsque l'intensité lumineuse décroit. Cette hormone, aussi connue sous le nom d'hormone de la nuit, est en quelque sorte le « gardien » de l'horloge biologique : c'est elle qui la synchronise avec la tombée de la nuit. Les chercheurs ont séquencé le gène MT2 qui code pour son récepteur chez 7600 diabétiques et sujets présentant une glycémie normale. Ils ont trouvé 40 mutations rares qui modifient la structure protéique du récepteur de la mélatonine. Parmi ces mutations, 14 rendaient non fonctionnel ce récepteur. Les chercheurs ont alors montré que chez les porteurs de ces mutations, qui les rendent insensibles à cette hormone, le risque de développer le diabète est près de sept fois plus élevé.

On sait que la production d'insuline, l'hormone qui contrôle le taux de glucose dans le sang, décroit durant la nuit afin d'éviter que l'individu ne souffre d'une hypoglycémie. En revanche, durant le jour, la production d'insuline reprend car c'est le moment où l'individu s'alimente et doit éviter l'excès de glucose dans le sang. Le métabolisme et le rythme biologique sont intrinsèquement liés. Mais ces résultats sont les premiers à démontrer l'implication directe d'un mécanisme de contrôle des rythmes biologiques dans le diabète de type 2.

Ces travaux pourraient déboucher sur de nouveaux traitements du diabète à visées préventive ou curatrice. En effet, en jouant sur l'activité du récepteur MT2, les chercheurs pourraient contrôler les voies métaboliques qui lui sont associées . Par ailleurs, ces travaux démontrent l'importance du séquençage du génome des patients diabétiques afin de personnaliser leur traitement. En effet, les causes génétiques du diabète sont nombreuses et l'approche thérapeutique devrait être adaptée aux voies métaboliques touchées par une dysfonction chez chaque patient.

DOCUMENT           CNRS             LIEN

 
 
 
 

NANO-MEDECINE

 

Paris, 25 janvier 2012

Nano-médecine : des vésicules polymères emboîtées les unes dans les autres miment la structure cellulaire
En nano-médecine, les principaux enjeux sont de maîtriser la synthèse de vecteurs extrêmement petits contenant un ou plusieurs principes actifs, et de les libérer au moment voulu, à l'endroit souhaité, sous une forme et à une dose contrôlées. Des chercheurs du Laboratoire de chimie des polymères organiques (CNRS / Université Bordeaux 1 / Institut polytechnique de Bordeaux) viennent de parvenir à encapsuler des nano-vésicules dans une vésicule un peu plus grande. De telles structures emboîtées miment l'organisation en compartiments d'une cellule. La reproduire est une première étape majeure avant de pouvoir y déclencher des réactions de façon contrôlée. Ces travaux ouvrent d'ores et déjà des perspectives inédites en termes d'encapsulation multiple, de réacteurs compartimentés et de vecteurs administrés par de nouvelles voies de délivrance (absorption orale par exemple). Ces résultats font l'objet d'une publication le 27 janvier 2012 dans Angewandte Chemie International Edition.
Les principaux nano-vecteurs de médicaments étudiés à ce jour sont des vésicules lipidiques ou « liposomes ». Leurs analogues à base de polymères ou « polymersomes » ont été découverts il y a une dizaine d'années. Ils présentent plusieurs avantages : plus stables et plus imperméables que les liposomes, ils s'avèrent plus facilement « fonctionnalisables et modulables » (il est possible par exemple de synthétiser un polymère thermosensible ou bien capable de reconnaître certaines cellules, notamment tumorales). L'équipe coordonnée par Sébastien Lecommandoux conçoit depuis 10 ans des polymersomes « intelligents » à base de polypeptides dont les propriétés et structures sont analogues à celles des virus.

Pour aller plus loin dans le mimétisme et l'inspiration biologique, une étape devait être franchie : encapsuler ces polymersomes les uns dans les autres. Ce cloisonnement permet de mimer la structure d'une cellule, elle-même constituée de compartiments (des petites organelles1 internes, sièges de milliers d'interactions et de réactions quotidiennes) et d'un cytoplasme viscoélastique, lui conférant entre autres une certaine stabilité mécanique. Mais, former de manière contrôlée des polymersomes emboités les uns dans les autres s'avère complexe.

Les chercheurs sont parvenus à cette prouesse en utilisant une méthode d'émulsion/centrifugation originale, simple d'utilisation, peu coûteuse en temps et en produits, et surtout très efficace. Par imagerie, ils ont ensuite mis en évidence, à l'aide de marqueurs fluorescents, la formation d'une structure « emboîtée »  de  polymersomes dans un autre. Maîtriser cette compartimentation permet désormais d'envisager l'encapsulation de multiples composés (dans les multiples polymersomes internes) au sein d'un même vecteur. C'est ce qu'ont démontré les chercheurs dans un second temps : ils ont encapsulé deux populations de polymersomes internes différents dans un polymersome unique plus grand. Au vu de leurs résultats, il est envisageable d'incorporer un nombre de vésicules distinctes beaucoup plus important. Cette capacité s'avère très intéressante pour la vectorisation combinatoire, en oncologie par exemple, où la faculté de pouvoir délivrer des composés actifs (parfois incompatibles) au sein d'un même vecteur est recherchée.

Ces structures originales pourraient par ailleurs être utilisées en tant que réacteurs compartimentés, en catalyse ou dans le domaine biomédical. Les chercheurs sont parvenus à encapsuler trois molécules fluorescentes différentes2 (utilisées comme « molécules modèles » de principes actifs) dans les trois compartiments différents que recèlent ces structures, à savoir la membrane du polymersome externe, la cavité aqueuse du polymersome externe et la membrane des polymersomes internes3. On pourrait donc envisager d'encapsuler des réactifs différents dans différents compartiments des polymersomes ou bien de contrôler le déclenchement de réactions différentes, en cascade dans ces polymersomes.

Outre une meilleure protection des principes actifs encapsulés, l'autre intérêt de cette « mise en boite » réside dans un meilleur contrôle, une modulation plus fine des propriétés de perméabilité des vésicules. Les chercheurs ont modélisé cela via une expérience de libération in vitro d'un agent anticancéreux, la doxorubicine (DOX), incorporé dans les polymersomes internes. La DOX est effectivement libérée plus vite (environ deux fois) lorsqu'elle est intégrée dans des nanopolymersomes classiques, que lorsque ceux-ci sont eux-mêmes encapsulés dans des polymersomes externes.

A ce jour, les chercheurs sont les premiers à présenter ce type d'encapsulation multiple et contrôlée dans des vésicules compartimentées, en particulier polymères, contenant également un mime du cytosquelette : ainsi, la structure cellulaire complète est reproduite4. Prochaine étape : parvenir à utiliser cette « mise en boîte » pour effectuer des réactions chimiques contrôlées sur des volumes de l'ordre de l'attolitre (10-18 litre) dans un milieu confiné.

DOCUMENT         CNRS         LIEN

 
 
 
 

REPARATION DE L'ADN

 

Paris, 7 septembre 2012

Observer en temps réel la réparation d'une seule molécule d'ADN
L'ADN est sans cesse endommagé par des agents environnementaux tels que les rayons ultra-violets ou certaines molécules de la fumée de cigarette. Sans arrêt, les cellules mettent en œuvre des mécanismes de réparation de cet ADN d'une efficacité redoutable. Une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, est parvenue à suivre en direct, pour la première fois, les étapes initiales de l'un de ces systèmes de réparation de l'ADN encore peu connu. Grâce à une technique inédite appliquée à une molécule unique d'ADN sur un modèle bactérien, les chercheurs ont compris comment plusieurs acteurs interagissent pour réparer l'ADN avec une grande fiabilité. Publiés dans Nature le 9 septembre 2012, leurs travaux visent à mieux comprendre l'apparition de cancers et comment ils deviennent résistants aux chimiothérapies.
Les rayons ultra-violets, la fumée de tabac ou encore les benzopyrènes contenus dans la viande trop cuite provoquent des altérations au niveau de l'ADN de nos cellules qui peuvent conduire à l'apparition de cancers. Ces agents environnementaux détériorent la structure même de l'ADN, entraînant notamment des dégâts dits « encombrants » (comme la formation de ponts chimiques entre les bases de l'ADN). Pour identifier et réparer ce type de dégâts, la cellule dispose de plusieurs systèmes, comme la « réparation transcriptionellement-couplée » (ou TCR pour Transcription-coupled repair system) dont le mécanisme d'action complexe reste encore aujourd'hui peu connu. Des anomalies dans ce mécanisme TCR, qui permet une surveillance permanente du génome, sont à l'origine de certaines maladies héréditaires comme le Xeroderma pigmentosum qui touche les « enfants de la Lune », hypersensibles aux rayons ultra-violets du Soleil.

Pour la première fois, une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, a réussi à observer les étapes initiales du mécanisme de réparation TCR sur un modèle bactérien. Pour y parvenir, les chercheurs ont employé une technique inédite de nanomanipulation de molécule individuelle(1) qui leur a permis de détecter et suivre en temps réel les interactions entre les molécules en jeu sur une seule molécule d'ADN endommagée. Ils ont élucidé les interactions entre les différents acteurs dans les premières étapes de ce processus TCR. Une première protéine, l'ARN polymérase(2), parcourt normalement l'ADN sans encombre mais se trouve bloquée lorsqu'elle rencontre un dégât encombrant, (tel un train immobilisé sur les rails par une chute de pierres). Une deuxième protéine, Mfd, se fixe à l'ARN polymérase bloquée et la chasse du rail endommagé afin de pouvoir ensuite y diriger les autres protéines de réparation nécessaires à la réparation du dégât. Les mesures de vitesses de réaction ont permis de constater que Mfd agit particulièrement lentement sur l'ARN polymérase : elle fait bouger la polymérase en une vingtaine de secondes. De plus, Mfd déplace bien l'ARN polymérase bloquée mais  reste elle-même ensuite associée à l'ADN pendant des temps longs (de l'ordre de cinq minutes), lui permettant de coordonner l'arrivée d'autres protéines de réparation au site lésé.

Si les chercheurs ont expliqué comment ce système parvient à une fiabilité de presque 100%, une meilleure compréhension de ces processus de réparation est par ailleurs essentielle pour savoir comment apparaissent les cancers et comment ils deviennent résistants aux chimiothérapies.

DOCUMENT            CNRS           LIEN

 
 
 
 

CAPTEUR MEDICAL

 

Paris, 08 novembre 2012

Un nouveau concept de capteur pour détecter des molécules d'intérêt médical et agroalimentaire
L'agroalimentaire et la médecine sont toujours à la recherche de méthodes plus efficaces pour détecter des biomolécules. Pour répondre à ces besoins, un nouveau concept de capteurs miniaturisés vient d'être mis au point par des chercheurs du LAAS-CNRS et de l'Université Toulouse III - Paul Sabatier, en collaboration avec la société HEMODIA spécialisée dans le développement de dispositifs médicaux. Ces capteurs peuvent mesurer dans une solution la concentration d'une gamme de molécules telles que le glucose, le lactate ou le glutamate pouvant servir à établir des diagnostics médicaux ou présentant un intérêt pour l'industrie agroalimentaire. Ce dispositif, appelé ElecFET, associe, pour la première fois, un microcapteur d'acidité et une microélectrode métallique présentant sur sa surface une enzyme spécifique à la molécule recherchée. L'avancée technologique est liée à l'imbrication de ces deux composants à l'échelle micrométrique sur une puce électronique en silicium. Ces travaux sont publiés le 08 novembre 2012 dans la revue Biosensors & Bioelectronics.
L'ElecFET (transistor électrochimique à effet de champ) repose sur une réaction chimique entre la biomolécule recherchée et une enzyme de la famille des oxydases capable de la dégrader. La surface de la microélectrode du dispositif présente une couche enzymatique spécifique de la molécule recherchée. Lorsque la molécule s'approche de l'électrode, l'enzyme la capture et la dégrade. Cette réaction produit du peroxyde d'hydrogène, mieux connu sous le nom d'eau oxygénée (H2O2). Le peroxyde est alors oxydé sur l'électrode grâce à une polarisation électrique adaptée, ce qui libère des ions hydroniums H3O+ et entraine une augmentation de l'acidité au voisinage de l'électrode. C'est ce pic d'acidité que le microcapteur de pH associé au dispositif détecte. Ainsi, en fonction de la chute de pH mesurée, l'ElecFET détermine la concentration de la molécule étudiée.

Au-delà du concept innovateur, l'ElecFET constitue une avancée technologique car elle permet, dans un volume extrêmement restreint (inférieur au microlitre), de dégrader la molécule recherchée, de contrôler l'oxydation du peroxyde ainsi produit et de mesurer la variation locale de pH associée. En cela, il est nécessaire que l'imbrication de l'électrode et du capteur pH se fasse à l'échelle micrométrique. Ces deux composants sont finalement intégrés sur une puce silicium, ce qui rend le dispositif compatible avec les technologies de la microélectronique.

L'ElecFET permet de détecter des molécules dans différentes gammes de concentration qui vont de la micromole à la mole par litre (1). L'avantage de ce système par rapport aux technologies actuelles est lié au contrôle potentiel de la réaction: en modifiant la polarisation de la microélectrode, il est possible de changer la gamme de détection du dispositif, et de pallier ainsi à une possible trop faible activité de l'enzyme utilisé. Testé par les chercheurs pour la détection du glucose, du lactate et du glutamate, le dispositif ElecFET a démontré une précision de mesure comparable à celle des technologies actuelles.

De nombreuses applications en médecine et dans l'agroalimentaire sont envisageables avec l'ElecFET. Par exemple, connaître la concentration en glucose dans le sang, ce qui est vital pour les patients diabétiques. Le lactate, que l'on retrouve dans la sueur, est un marqueur du stress physiologique qui décrit, par exemple, l'état de fatigue d'un sportif. Le glutamate est un neurotransmetteur excitateur du système nerveux central dont l'analyse en continu est nécessaire pour le diagnostic de différents désordres neurologiques tels que la maladie d'Alzheimer. Sur le plan de l'agroalimentaire, le lactate est un marqueur de tous les procédés basés sur la fermentation lactique, tandis que le glutamate est un vecteur du goût umami (2). L'éventail de molécules détectées par l'ElecFET pourrait finalement être élargi à l'ensemble des enzymes de la famille des oxydases, ouvrant de nombreuses potentialités d'application.

DOCUMENT                CNRS                LIEN    

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google