ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

NANO-MOTEUR

 

Paris, 7 janvier 2013

Le plus petit moteur dont on puisse contrôler le sens de rotation
Un moteur nanométrique dont le sens de rotation peut être inversé à volonté a été réalisé par une équipe franco-américaine composée de chercheurs du Centre d'élaboration de matériaux et d'études structurales (CEMES, CNRS) et de l'Université d'Ohio. Pour la première fois, ils ont atteint la taille limite inférieure pour un dispositif capable de transformer l'énergie en mouvement de rotation. De seulement 2 nanomètres de diamètre, le rotor de ce moteur est mis en mouvement grâce aux électrons délivrés par la pointe d'un microscope à effet tunnel. Publiés dans le numéro de janvier 2013 de Nature Nanotechnologies, ces travaux explorent la mécanique et l'énergétique des « molécule-moteurs » et annoncent les composants des futurs robots nanométriques.
Le nano-moteur est composé de trois parties. La première constitue le stator du moteur qui permet de l'accrocher à une surface d'or. Au bout de celui-ci, se trouve un atome métallique, du ruthénium, qui joue le rôle de rotule sur laquelle vient se fixer le rotor moléculaire. Ce dernier est constitué de cinq pales dont une a été volontairement raccourcie pour suivre le sens de rotation du rotor. Au total, seulement 200 atomes constituent le moteur. Pas moins de 15 étapes ont été nécessaires pour la synthèse de cette molécule complexe. Sa conception et synthèse ont demandé près de 10 ans d'efforts aux chercheurs du CEMES.

En plaçant la molécule à une température de –268,5°C (4,6°C au-dessus du zéro absolu) sur la surface d'or, les chercheurs sont parvenus à déclencher le mouvement pas à pas du rotor et à en contrôler le sens de rotation. Pour cela, ils lui ont délivré des électrons grâce à la pointe d'un microscope à effet tunnel qui sert à la fois d'instrument d'observation et de source d'énergie. Le sens de rotation dépend de la pale du rotor où est positionnée l'extrémité de la pointe du microscope. La précision dans le pointage doit être de l'ordre du dixième de nanomètre.

À présent, les chercheurs veulent mesurer la puissance délivrée par ce nano-moteur. Pour y parvenir, ils doivent placer la molécule en interaction avec les plus petits engrenages solides qu'il soit possible actuellement de fabriquer. Les chercheurs imaginent que des moteurs tels que celui-ci pourront un jour entrer dans l'assemblage de nano-robots ou de nano-véhicules que les chercheurs du CEMES étudient par ailleurs.

DOCUMENT             CNRS                 LIEN

 
 
 
 

NANO-FIBRES PLASTIQUES

 

Paris, 20 AVRIL 2012

Des nano-fibres plastiques hautement conductrices qui se construisent « toutes seules »
Deux équipes du CNRS et de l'Université de Strasbourg, menées par Nicolas Giuseppone 1 et Bernard Doudin2, ont réussi à fabriquer des fibres plastiques fortement conductrices, de quelques nanomètres d'épaisseur. Ces nano-fils, qui font l'objet d'un brevet déposé par le CNRS, se construisent « tout seuls » sous la seule action d'un flash lumineux ! Peu coûteux à obtenir et faciles à manipuler contrairement aux nanotubes de carbone3, ils allient les avantages des deux matériaux utilisés à ce jour pour conduire le courant électrique : les métaux et les polymères organiques plastiques4. En effet, leurs remarquables propriétés électriques sont proches de celles des métaux. De plus, ils sont légers et souples comme les plastiques. De quoi relever l'un des plus importants défis de l'électronique du 21e siècle : miniaturiser ses composants jusqu'à l'échelle nanométrique. Ces travaux sont publiés le 22 avril 2012 dans l'édition en ligne avancée de la revue Nature Chemistry. Prochaine étape : démontrer que ces fibres peuvent être intégrées industriellement dans des appareils électroniques comme les écrans souples, les cellules solaires, etc.
Lors de précédents travaux publiés en 20105, Nicolas Giuseppone et ses collègues étaient  parvenus à obtenir pour la première fois des nano-fils. Pour ce faire, ils avaient modifié chimiquement des molécules de synthèse utilisées depuis plusieurs dizaines d'années dans l'industrie pour le processus de photocopie Xerox® : les « triarylamines ». A leur grande surprise, ils avaient observé qu'à la lumière et en solution, leurs nouvelles molécules s'empilaient spontanément de manière régulière pour former des fibres miniatures. Ces fils longs de quelques centaines de nanomètres (1 nm = 10-9 m, soit un milliardième de mètre), sont constitués par l'assemblage dit «supramoléculaire » de plusieurs milliers de molécules.

Les chercheurs ont ensuite étudié en détail, en collaboration avec l'équipe de Bernard Doudin, les propriétés électriques de leurs nano-fibres. Cette fois-ci, ils ont mis leurs molécules en contact avec un microcircuit électronique comportant des électrodes en or séparées de 100 nm. Puis ils ont appliqué un champ électrique entre celles-ci.

DOCUMENT       CNRS           LIEN

 
 
 
 

MICROELECTRONIQUE

 

Paris, 12 janvier 2011

Microélectronique : un gaz d'électrons à la surface d'un isolant ouvre la voie du transistor multi-fonctions
Des chercheurs du CNRS et de l'Université Paris-Sud 11 (1) ont découvert comment créer une couche conductrice à la surface d'un matériau isolant et transparent très étudié pour la microélectronique du futur, le titanate de strontium (SrTiO3). Cette couche conductrice de deux nanomètres d'épaisseur est un gaz d'électrons métallique bidimensionnel qui fait partie du matériau. Facilement réalisable, elle ouvre des perspectives pour l'électronique à base d'oxydes de métaux de transition (la famille de SrTiO3), qui cherche à profiter de l'énorme variété des propriétés physiques de ces matériaux (supraconductivité, magnétisme, thermoélectricité, etc.) pour intégrer plusieurs fonctionnalités différentes dans un même dispositif microélectronique. Cette découverte inattendue, mise en évidence au synchrotron SOLEIL, est publiée dans la revue Nature du 13 janvier 2011.
Aujourd'hui, les composants microélectroniques sont fabriqués à base de couches de semi-conducteurs déposées sur un substrat de silicium. Afin de poursuivre l'accroissement périodique des performances des composés microélectroniques au-delà de 2020, des solutions technologiques alternatives sont à l'étude. Les chercheurs travaillent de plus en plus sur les oxydes de métaux de transition (2), qui présentent des propriétés physiques intéressantes comme la supraconductivité (3), la magnétorésistance (4), la thermoélectricité (5), la multi-ferroïcité (6), ou encore la capacité photo catalytique (7).

Parmi les oxydes des métaux de transition, le titanate de strontium (SrTiO3) est très étudié. C'est un isolant, mais il devient bon conducteur en le dopant (en créant quelques lacunes d'oxygène par exemple). Les interfaces entre le SrTiO3 et d'autres oxydes (LaTiO3 ou LaAlO3) sont conductrices, même si les deux matériaux sont isolants. En plus, elles présentent de la supraconductivité, de la magnétorésistance, ou de la thermoélectricité avec de très bons rendements à température ambiante. Seulement voilà : les interfaces entre oxydes sont très difficiles à réaliser.

Une découverte inattendue vient de faire sauter ce verrou technologique. Une équipe internationale pilotée par des scientifiques du CNRS et de l'Université Paris-Sud 11 vient de réaliser un gaz d'électrons métallique bidimensionnel à la surface de SrTiO3. Il s'agit d'une couche conductrice de deux nanomètres d'épaisseur environ, obtenue en cassant un morceau de titanate de strontium sous vide. Ce procédé, très simple, est peu coûteux. Les éléments qui constituent SrTiO3 sont disponibles en grande quantité dans les ressources naturelles et c'est un matériau non toxique, contrairement aux matériaux les plus utilisés aujourd'hui en microélectronique (les tellurures de bismuth). En outre, des gaz d'électrons métalliques bidimensionnels pourraient probablement être créés de façon similaire à la surface d'autres oxydes de métaux de transition.

La découverte d'une telle couche conductrice (sans avoir à rajouter une couche d'un autre matériau) est un grand pas en avant pour la microélectronique à base d'oxydes. Elle pourrait permettre de combiner les propriétés intrinsèques multifonctionnelles des oxydes de métaux de transition avec celles du métal bidimensionnel à sa surface. On peut songer, par exemple, au couplage d'un oxyde ferro-électrique avec le gaz d'électrons à sa surface, pour faire des mémoires non volatiles, ou à la fabrication de circuits transparents sur la surface des cellules solaires ou des écrans tactiles.

Les expériences de photoémission résolue en angle (ARPES) qui ont servi à mettre en évidence le gaz d'électron métallique bidimensionnel ont été réalisées d'une part au synchrotron SOLEIL (Saint-Aubin, France), et au Synchrotron Radiation Center (Université du Wisconsin, USA).

DOCUMENT               CNRS           LIEN

 
 
 
 

RAYONNEMENT

 

Paris, 29 mars 2012

Générer pour la première fois un rayonnement ultra-bref de manière contrôlée à l'aide d'un plasma
Pour observer des phénomènes ultrarapides tels que le mouvement des électrons au sein de la matière, les chercheurs ont besoin de sources capables de produire des rayonnements lumineux extrêmement brefs et énergétiques. Si des dispositifs capables d'émettre des impulsions dans le domaine de l'attoseconde (10-18 seconde) existent déjà, de nombreuses équipes s'efforcent de repousser les limites de leur intensité et de leur durée. Une équipe pilotée par le Laboratoire d'optique appliquée (LOA, CNRS / ENSTA-Paristech / Ecole Polytechnique), en collaboration avec le CEA-Saclay et le Laboratoire pour l'utilisation des lasers intenses (LULI, CNRS / CEA / Ecole Polytechnique / UPMC), a réussi, pour la première fois, à accélérer et guider de façon reproductible des électrons dans un plasma à l'aide d'un laser. Ces électrons excitent le plasma, qui émet alors des impulsions électromagnétiques ultra brèves à des longueurs d'onde dans le domaine de l'extrême ultraviolet. Ce rayonnement attoseconde énergétique pourra servir à sonder les processus électroniques ultra rapides. Ces travaux sont publiés dans Nature Physics.
Des événements, tels que l'ionisation d'un atome ou le passage d'un électron d'un état d'excitation à un autre, se déroulent sur des échelles de temps typiques de l'ordre de l'attoseconde (un milliardième de milliardième de seconde). Pour les observer en direct, on doit pouvoir produire des impulsions lumineuses d'une durée comparable afin de « saisir » l'évolution du phénomène, à la manière d'un obturateur photographique. Jusqu'à présent, il n'existait qu'une manière d'obtenir des impulsions aussi brèves, en excitant par laser les électrons d'un gaz. Ces derniers émettent alors une impulsion dans le domaine de l'extrême ultraviolet (X-UV). Mais ce procédé a des limites et, pour observer certains phénomènes, les chercheurs auraient besoin de sources encore plus brèves et surtout plus énergétiques. Voilà pourquoi de nombreuses équipes se sont tournées vers la physique des plasmas, cet état de la matière extrêmement chaud et dense, constitué d'ions et d'électrons.
L'équipe menée par le LOA est la première à avoir obtenu des impulsions attoseconde dans l'X-UV de façon reproductible en contrôlant l'excitation d'un plasma par des électrons accélérés dans un champ laser. Pour y parvenir, les chercheurs ont d'abord dû développer une source laser très performante, permettant d'atteindre des éclairements mille à dix mille fois supérieurs à ceux utilisés dans les milieux gazeux, et délivrant un millier d'impulsions par seconde d'une durée de l'ordre de quelques femtosecondes chacune (10-15 seconde). De plus, cette source est stabilisée en phase : toutes les impulsions générées sont identiques les unes par rapport aux autres. Les chercheurs sont parvenus à focaliser toute la puissance lumineuse du laser sur une tache d'un peu plus d'un micron de diamètre à la surface d'une cible en silice. La matière de la cible est ainsi transformée en un plasma de densité comparable à celle d'un solide. Dans ce plasma, les électrons sont fortement accélérés par le champ électromagnétique produit par le faisceau laser. Lorsqu'ils traversent le plasma, ils excitent au sein de celui-ci des mouvements collectifs de charges produisant alors un rayonnement X-UV que les chercheurs ont pu observer et analyser à l'aide d'un spectromètre.

Ces travaux devraient déboucher sur une source de rayonnement énergétique dont pourront se servir physiciens et chimistes pour sonder les processus électroniques dans la matière avec une résolution temporelle dans le domaine attoseconde. Pour l'heure, les chercheurs prévoient d'améliorer encore leur source laser afin de produire un rayonnement encore plus bref et à plus courte longueur d'onde (dans le domaine des rayons X), en guidant de manière contrôlée le mouvement des électrons dans le plasma qui se déplacent à des vitesses proches de celle de la lumière.

DOCUMENT           CNRS           LIEN

 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google