ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

TOUT L'UNIVERS DANS UN ATOME

 

Tout lunivers dans un atome
  Gerardus t Hooft


Dans cet exposé, je vais expliquer que lunivers gigantesque dans lequel nous vivons abrite un nombre incroyable de minuscules univers : les atomes. Ils présentent une structure extrêmement riche qui a permis aux physiciens dexercer leur sagacité durant tout le siècle précédent. Le sujet de cet exposé est cet univers microscopique que lon trouve à lintérieur des atomes mais il est intimement relié à lunivers macroscopique qui nous est rendu plus familier par les images des médias comme celle de la conquête spatiale.
Au début nexistait quun point, et rien dautre que ce point. Il y a plus de 13 milliards dannées, ce point explosa, marquant le début de lunivers tout entier. Depuis ce moment, lunivers est régi par les lois de la physique. Lors de ses premiers instants, il évolua extrêmement rapidement. Des choses complexes arrivèrent alors, que lon comprend difficilement.
La première lumière de lunivers, que lon observe maintenant, est apparue 380 000 ans après cette explosion. Ce nest quun milliard dannées plus tard que lunivers commence à ressembler à ce quil est aujourdhui : un univers constitué détoiles, situées à lintérieur de galaxies séloignant les unes des autres.
Deux choses remarquables caractérisent lunivers. La première, cest quil est presque vide : il existe de grands espaces désertiques entre les étoiles et les galaxies, de telle sorte quen moyenne, lunivers présente une densité de quelques atomes seulement par kilomètre cube. La deuxième, cest que tous les objets de lunivers obéissent aux lois de la physique de manière extrêmement précise. Des expériences de toutes sortes, ainsi que des calculs complexes établissent une chose qui nétait pas évidente a priori : les lois de la physique semblent partout les mêmes, peu importe la direction dans laquelle on observe lunivers. Lune de ces lois est celle de la gravitation. Cest elle qui fait que les planètes décrivent autour du soleil des ellipses presque parfaites. Elle implique également que les planètes accélèrent à proximité du soleil et décélèrent quand elles sen éloignent. Il sagit dune loi parmi dautres mais dont les effets sont clairement visibles.
Lunivers compte un nombre démesurément grand datomes et dans ces mondes minuscules que sont les atomes, on trouve des objets, les électrons, qui se déplacent selon des lois physiques ressemblant beaucoup à celles régissant le mouvement des planètes autour du soleil. Les électrons tournent autour dun objet central que lon appelle le noyau atomique. Latome constitue ainsi un univers à lui tout seul, mais avec des dimensions minuscules.
La structure de latome
Dire quun atome peut être assimilé à un système planétaire serait en fait mentir. Latome est gouverné par des lois beaucoup plus complexes, celles de la mécanique quantique. Celle-ci dit quen moyenne, les électrons se déplacent selon des orbites elliptiques ; mais cela en moyenne seulement. Leur mouvement est en fait aléatoire, il semble incontrôlé. Autour dun noyau, certaines régions sont dépeuplées délectrons alors que dautres en fourmillent. Ce sont les lois de la mécanique quantique qui permettent de faire la distinction entre ces régions.
Latome possède une autre caractéristique qui le rapproche de lunivers : il est quasiment vide. En effet, le noyau atomique est environ 100 000 fois plus petit que les orbites des électrons, ce qui rend latome beaucoup plus vide en réalité quun système planétaire. Cest ce noyau, dont lunité de taille est le Fermi, 10-15 m, qui est la partie la plus intéressante et la plus complexe de latome.
Il y a plusieurs décennies, les physiciens découvrirent que le noyau atomique est constitué de deux sortes dobjets : les protons et les neutrons. Les premiers sont électriquement chargés alors que les seconds sont neutres, mais hormis cette différence, ces deux objets sont similaires. Ce qui a été découvert plus récemment dans lhistoire de la physique des particules est quils sont tous les deux constitués de trois sous-unités appelées quarks. Ces derniers obéissent à des lois très particulières qui seront évoquées plus loin.
Il y a 35 ans lexistence des quarks était à peine vérifiée. On ne comprenait pas leur comportement, ni pourquoi protons et neutrons étaient constitués de trois dentre eux. Toutes les particules observées à lépoque étaient cependant regroupées en plusieurs classes, de la même façon quen biologie les espèces danimaux et de plantes sont classées en familles. Il existait une distinction entre les leptons, particules insensibles à ce qui fut appelé plus tard la force forte, et les hadrons, qui y étaient sensibles et avaient donc un comportement totalement différent. Les hadrons furent ensuite séparés entre mésons et baryons. Enfin, il existait une troisième sorte de particules, les photons, qui avec leur comportement radicalement différent des autres, constituaient une famille à eux seuls.
Les leptons, dont on connaissait deux représentants à lépoque, électrons et muons, peuvent être chargés électriquement, le plus souvent de manière négative, ou bien être neutres : on les appelle alors neutrinos. De manière générale, les particules sont caractérisées par leur charge électrique ainsi que par leur spin, propriété liée à leur rotation. Elles sont également accompagnées de leurs « contraires », si lon peut dire, leurs antiparticules. Il existe ainsi des antileptons et des antibaryons. Les mésons, eux, sont identiques à leurs antiparticules.
Beaucoup de questions émergent de cette classification : Comment peut-on expliquer le comportement de toutes ces particules ? Comment peut-on les décrire ? Enfin, comment sagencent-elles pour former les atomes ? Pour répondre à ces questions, il a été nécessaire de les étudier.
Les outils pour étudier la structure de latome
Pour étudier les atomes, il a été nécessaire de construire de très grandes machines, les accélérateurs de particules. Lun deux est situé à la frontière de la Suisse et de la France, près de Genève. Sil nétait pas situé sous terre, parfois à cent mètres de profondeur, dun avion on pourrait constater quil a la forme dun cercle de 26 km de circonférence. Il sagit dun circuit que des particules parcourent chacune dans un sens opposé pour se heurter de plein fouet. Les investigations des physiciens concernent ce qui se déroule lors de telles collisions. Cette machine appelée LEP, pour Large Electron-Positron Collider, a été démontée il y a quelques années pour être remplacée par une autre machine, le LHC, acronyme pour Large Hadron Collider. La première a intensivement étudié les leptons, comme lélectron et son antiparticule, alors que la nouvelle génération daccélérateurs étudiera les hadrons. Les physiciens doivent cependant attendre encore plusieurs années avant de recevoir les premiers résultats du LHC, prévus en 2007.
La photographie (fig.1) représente un des nombreux détecteurs de particules utilisés dans les accélérateurs. Comparés à la taille dun homme, ces objets sont particulièrement grands. Ceci est une source de questionnement pour les néophytes : pourquoi nutilise-t-on pas de petits détecteurs pour étudier des particules si minuscules ? Ny gagnerait-on pas en résolution ? Il se trouve que non. Pour bien voir de petits objets, il faut de grosses machines. Par exemple, on pourrait penser que les insectes, avec leurs petits yeux, se voient très bien. Cest tout le contraire. Nous voyons beaucoup mieux les insectes quils ne se voient eux-mêmes, car nos yeux sont beaucoup plus gros que les leurs. Cest pour cela que les insectes ont des antennes, comblant ainsi leur déficit sensoriel. Ainsi, former des images de minuscules particules nécessite dénormes appareils. Les physiciens, qui cherchent à sonder la matière le plus profondément possible, doivent par conséquent construire les machines les plus imposantes qui soient& tout en respectant un certain budget.



Les forces dinteractions et les particules de Yang-Mills
Revenons encore trente cinq ans en arrière. A cette époque, il fallait comprendre leurs interactions pour pouvoir décrire les particules & Quelles soient déviées, crées ou annihilées, les physiciens ont réuni tous ces phénomènes dans le concept de force. Ils ont ainsi découvert que trois sortes de forces totalement différentes agissaient sur les noyaux atomiques. Lune delles est assez familière, il sagit de lélectromagnétisme. Cest la force qui est utilisée de manière prédominante dans les microphones et les télévisions. Les uns utilisent la force électromagnétique pour amplifier la voix, les autres pour créer une image sur lécran. De manière plus simple, on peut voir leffet de cette force quand un aimant se déplace à proximité dun autre aimant, ou dun objet en fer. Ou bien même quand on se coiffe par temps sec et que les cheveux sélectrisent. Il existe également deux autres forces actives dans le domaine des particules élémentaires : la force forte et la force faible. On connaissait peu de leurs propriétés il y a 35 ans, et par bien des aspects, elles restaient énigmatiques : comment affectent-elles le comportement des particules ?
Il est très difficile de répondre à cette question. On savait quelles devaient obéir à la fois à la théorie de la relativité dEinstein et aux lois de la mécanique quantique. Mais ces lois sont complexes, et il est très difficile de les réconcilier pour que les mouvements observés des particules respectent ces deux théories fondamentales. Ce nest quen 1954 quune avancée fut effectuée. Deux physiciens américains, Robert-Mills, étudiant à lépoque et Chen Ning Yang, futur prix Nobel, proposèrent ensemble une façon de décrire les particules subatomiques. Leur réflexion fut la suivante : certaines forces de la nature sont déjà connues, les forces électromagnétiques ; peut-on imaginer une nouvelle force, quelque chose de plus général que lélectricité et le magnétisme, quon pourrait décrire avec des équations similaires et qui serait cohérente avec les connaissances acquises par ailleurs en physique ? Ils trouvèrent une réponse à cette question mais ils se rendirent compte très tôt quelle était probablement erronée. Beaucoup de physiciens avaient eu des idées similaires mais les avaient rejetées car ils ne leur trouvaient aucun sens. Peut-être navaient-t-elles aucun sens mais elles étaient tellement belles quils publièrent néanmoins leurs travaux, malgré les critiques de leurs pairs, laissant aux autres le soin de sinquiéter du fait quelles naient rien de réel.
Quont-ils donc inventé qui allait devenir si important, seulement quelques décennies plus tard ? Yang et Mills imaginèrent quil existait un autre champ, ressemblant beaucoup aux champs électriques et magnétiques, mais qui en serait également différent par certains aspects : une particule évoluant dans un tel champ changerait didentité. Au passage, rappelons que lidentité est une caractéristique essentielle des particules : la modifier a dénormes conséquences sur leur comportement. Un champ électromagnétique naltère pas cette identité, mais Yang et Mills imaginèrent quune particule puisse transmuter en une autre quand elle traverserait le champ quils ont décrit. Un proton, par exemple, deviendrait neutron. Le point fondamental est que deux particules initialement identiques pourraient ainsi devenir différentes.

 

VIDEO               CANAL  U              LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

DE L'ATOME AU CRISTAL

 

Transcription de la 580e conférence de l'Université de tous les savoirs prononcée le 23 juin 2005


De l'atome au cristal : Les propriétés électroniques de la matière
Par Antoine Georges
Les ordres de grandeur entre l'atome et le matériau :
1. Il existe entre l'atome et le matériau macroscopique un très grand nombre d'ordres de grandeur, d'échelles de longueur. Prenons l'exemple d'un lingot d'or : quelqu'un muni d'une loupe très puissante pourrait observer la structure de ce matériau à l'échelle de l'atome : il verrait des atomes d'or régulièrement disposés aux nSuds d'un réseau périodique. La distance entre deux de ces atomes est de l'ordre de l'Angstrom, soit 10-10m. Ainsi, dans un lingot cubique de un millimètre de côté, il y a 10 millions (107) d'atomes dans chaque direction soit 1021 atomes au total ! Les échelles spatiales comprises entre la dimension atomique et macroscopique couvrent donc 7 ordres de grandeur. Il s'agit alors de comprendre le fonctionnement d'un système composé de 1021 atomes dont les interactions sont régies par les lois de la mécanique quantique.
2. Malheureusement, une telle loupe n'existe évidemment pas. Cependant, il est possible de voir les atomes un par un grâce à des techniques très modernes, notamment celle du microscope électronique à effet tunnel. Il s'agit d'une sorte de « gramophone atomique », une pointe très fine se déplace le long d'une surface atomique et peut détecter d'infimes changements de relief par variation du courant tunnel (voir plus loin). Cette découverte a valu à ses inventeurs le prix Nobel de physique de 1986 à Gerd Karl Binnig et Heinrich Rohrer (Allemagne).
3. Nous pouvons ainsi visualiser les atomes mais aussi les manipuler un par un au point de pouvoir « dessiner » des caractères dont la taille ne dépasse pas quelques atomes ! (Le site Internet www.almaden.ibm.com/vis/stm/gallery.html offre de très belles images de microscopie à effet tunnel). Cette capacité signe la naissance du domaine des nanotechnologies où la matière est structurée à l'échelle atomique.
4. Les physiciens disposent d'autres « loupes » pour aller regarder la matière à l'échelle atomique. Parmi elles, le synchrotron est un grand anneau qui produit un rayonnement lumineux très énergétique et qui permet de sonder la structure des matériaux, des molécules ou des objets biologiques, de manière statique ou dynamique. Les applications de ce genre de loupe sont innombrables en physique des matériaux, chimie, biologie et même géologie (par pour l'étude des changements structuraux des matériaux soumis à de hautes pressions).
5. Il existe encore bien d'autres « loupes » comme par exemple la diffusion de neutrons, la spectroscopie de photo-émission, la résonance magnétique... Dans la diffusion de neutrons, un neutron pénètre un cristal pour sonder la structure magnétique du matériau étudié.
La grande diversité des matériaux :
6. Ces différentes techniques révèlent la diversité structurale des matériaux, qu'ils soient naturels ou artificiels. Le sel de cuisine, par exemple, a une structure cristalline très simple. En effet, il est composé d'atomes de sodium et de chlore régulièrement alternés. Il existe également des structures plus complexes, comme par exemple les nanotubes de carbone obtenus en repliant des feuilles de graphite sur elles-mêmes ou la célèbre molécule C60 en forme de ballon de football composée de 60 atomes de carbone (fullerènes)
7. Tous ces matériaux peuvent être soit présents à l'état naturel soit élaborés de manière artificielle. Cette élaboration peut être faite plan atomique par plan atomique en utilisant une technique appelée « épitaxie par jet moléculaire » dans laquelle un substrat est bombardé par des jets moléculaires. Les atomes diffusent pour former des couches monoatomiques. Cette technique permet alors de fabriquer des matériaux contrôlés avec une précision qui est celle de l'atome.
8. La diversité des matériaux se traduit donc pas une grande diversité des structures, mais aussi de leurs propriétés électroniques. Par exemple, la résistivité (c'est-à-dire la capacité d'un matériau à s'opposer au passage d'un courant : R=U/I) varie sur 24 ordres de grandeurs entre de très bons conducteurs et un très bon isolant, ce qui est encore bien plus que les 7 ordres de grandeurs des dimensions spatiales. Il existe donc des métaux (qui sont parfois de très bons conducteurs), des isolants (de très mauvais conducteurs), des semi-conducteurs et même des supraconducteurs. Ces derniers sont des métaux, qui en dessous d'une certaine température, n'exercent aucune forme de résistance et ne dissipent aucune énergie. D'autres matériaux encore voient leur gradient thermique évoluer en fonction du courant qui les traverse, ceci permet par exemple de fabriquer du « froid » avec de l'électricité ou fabriquer de l'électricité avec de la chaleur, ce sont des thermoélectriques. Enfin, la résistivité de certains matériaux est fonction du champ magnétique dans lequel ils sont placés.
9. Ces diversités, autant structurales qu'électroniques, sont et seront de plus en plus mises à profit dans d'innombrables applications. Nous pouvons citer parmi elles, le transistor, le circuit intégré, le lecteur CD, l'imagerie par résonance magnétique etc. Derrière ces applications pratiques, il y a des problèmes de physique et de chimie fondamentales, et pour parfaitement comprendre l'origine de cette diversité, il faut remonter aux lois de la mécanique quantique. Il s'agit donc de jeter un pont entre l'échelle macroscopique et le monde quantique, à travers ces fameux 7 ordres de grandeurs. Particulièrement dans ce domaine, les sciences théoriques et expérimentales interagissent énormément. Nous allons donc partir de l'échelle atomique pour essayer de comprendre le comportement macroscopique d'un matériau.
De l'atome au matériau :
10. Commençons donc par la structure atomique. Un atome est composé d'un noyau, autour duquel gravitent des électrons. L'électron est environ 2000 fois plus léger que les protons et neutrons, constituants de base du noyau. La taille de cet ensemble est d'environ 10-10m (un Angstrom).
11. Le système {noyau+électron} semble comparable au système {Terre+soleil}, dans ce cas, l'électron tournerait sur une orbite bien régulière autour du noyau. Il n'en n'est rien. Même si les physiciens ont, pour un temps, cru au modèle planétaire de l'atome, nous savons depuis les débuts de la mécanique quantique que le mouvement de l'électron est bien différent de celui d'une planète !
12. La première différence notable est que l'électron ne suit pas une trajectoire unique. En fait, nous ne pouvons trouver l'électron qu'avec une certaine probabilité dans une région de l'espace. Cette région est appelée orbitale atomique. La forme de ce nuage de probabilités dépend de l'énergie de l'électron et de son moment cinétique. Si cette région est sphérique, on parle d'orbitale « s », (cas de l'atome d'hydrogène où seul un électron tourne autour du noyau). On parle d'orbitale « p » lorsque le nuage de probabilités est en forme de 8, (atome d'oxygène). Enfin, lorsque ce nuage prend une forme de trèfle à quatre feuilles, on parle d'orbitale « d » (atome de fer). Ainsi, il n'existe pas de trajectoires à l'échelle quantique, mais uniquement des probabilités de présence.
13. De plus, l'énergie d'un électron ne peut prendre que certaines valeurs bien déterminées, l'énergie est quantifiée (origine du terme quantique). La localisation de ces différents niveaux d'énergies et la transition entre ces niveaux par émission ou par absorption a été à l'origine de la mécanique quantique. Ces travaux ont valu à Niels Bohr le prix Nobel de physique de 1922. L'état d'énergie le plus bas est appelé état fondamental de l'atome. Il est par ailleurs possible d'exciter l'électron (avec de la lumière, par exemple) vers des niveaux d'énergie de plus en plus élevés. Ceci est connu grâce aux spectres d'émission et d'absorption de l'atome, qui reflètent les différents niveaux d'énergie possibles.
14. La troisième particularité du mouvement de l'électron est son Spin, celui-ci peut être représenté par une représentation imagée : l'électron peut tourner sur lui-même vers la gauche ou vers la droite, en plus de sa rotation autour du noyau. On parle de moment cinétique intrinsèque ou de deux états de Spin possibles. Pauli, physicien autrichien du XXéme siècle, formula le principe d'exclusion, à savoir qu'un même état d'énergie ne peut être occupé par plus de deux électrons de Spin opposé. Nous verrons plus loin qu'il est impossible de connaître l'état macroscopique d'un matériau sans tenir compte du principe d'exclusion de Pauli. Pour l'atome d'hélium par exemple, la première (et seule) couche contient deux atomes et deux seulement, il serait impossible de rajouter un atome dans cette couche, elle est dite complète.
15. On peut considérer grâce à ces trois principes (description probabiliste, niveaux d'énergies quantifiés et principe d'exclusion) que l'on remplit les couches électroniques d'un atome avec les électrons qui le constituent. Les éléments purs, dans la nature, s'organisent alors de manière périodique, selon la classification de Mendeleïev. Cette classification a été postulée de manière empirique bien avant le début de la mécanique quantique, mais cette organisation reflète le remplissage des couches atomiques, en respectant le principe d'exclusion de Pauli.
16. Un autre aspect du monde quantique est l'effet tunnel. Dans le microscope du même nom, cet effet est mis à profit pour mesurer une variation de relief. L'effet tunnel est une sorte de « passe-muraille quantique ». En mécanique classique, un personnage qui veut franchir un obstacle doit augmenter son niveau d'énergie au dessus d'un certain niveau. En mécanique quantique, en revanche, il est possible de franchir cet obstacle avec une certaine probabilité même si notre énergie est inférieure au potentiel de l'obstacle. Bien sûr, cette probabilité diminue à mesure que cette différence d'énergie augmente.
17. Cet effet tunnel assure la cohésion des solides, et permet aussi à un électron de se délocaliser sur l'ensemble d'un solide. Cet effet tunnel est possible grâce à la dualité de l'électron : il est à la fois une particule et une onde. On peut mettre en évidence cette dualité grâce à l'expérience suivante : une source émet des électrons un par un, ceux-ci ont le choix de passer entre deux fentes possibles. La figure d'interférence obtenue montre que, bien que les électrons soient émis un par un, ils se comportent de manière ondulatoire.
18. Les électrons des couches externes de l'atome (donc les moins fortement liés au noyau) vont pouvoir se délocaliser d'un atome à l'autre par effet tunnel. Ces « sauts », sont à l'origine de la cohésion d'un solide et permettent également la conduction d'un courant électronique à travers tout le solide.
19. Une autre conséquence de cet effet tunnel est que l'énergie d'un solide n'est pas une simple répétition n fois des niveaux d'énergie de chaque atome isolé. En réalité, il apparaît une série d'énergies admissibles qui se répartissent dans une certaine gamme d'énergie, cette gamme est appelée bande d'énergie permise. D'autres gammes restent interdites. Ainsi, si les atomes restent éloignés les uns des autres, les bandes d'énergies admises sont très étroites, mais à mesure que la distance inter-atomique diminue, ces bandes s'élargissent et le solide peut alors admettre une plus large gamme de niveaux d'énergie.
20. Nous pouvons penser, comme dans la classification périodique, que les électrons remplissent ces bandes d'énergies, toujours en respectant le principe d'exclusion de Pauli. L'énergie du dernier niveau rempli est appelée énergie du niveau de Fermi. La manière dont se place ce dernier niveau rempli va déterminer la nature du matériau (métal ou isolant). Si le niveau de Fermi se place dans une bande d'énergie admise, il sera très facile d'exciter les électrons, le matériau sera donc un métal. Si au contraire le niveau de Fermi se place dans une bande d'énergie interdite, il n'est pas possible d'exciter les électrons en appliquant une petite différence de potentiel, nous avons donc affaire à un isolant. Enfin, un semi-conducteur est un isolant dont la bande d'énergie interdite (« gap », en anglais), est suffisamment petite pour que l'on puisse exciter un nombre significatif de porteurs de charge simplement avec la température ambiante.
Nous voyons donc que l'explication de propriétés aussi courantes des matériaux repose sur les principes généraux de la mécanique quantique.
21. Ainsi, dans un solide constitué d'atomes dont la couche électronique externe est complète, les électrons ne peuvent sauter d'un atome à l'autre sans violer le principe d'exclusion de Pauli. Ce solide sera alors un isolant.
22-23. En réalité, les semi-conducteurs intrinsèques (les matériaux qui sont des semi-conducteurs à l'état brut) ne sont pas les plus utiles. On cherche en fait à contrôler le nombre de porteurs de charge que l'on va induire dans le matériau. Pour cela, il faut créer des états d'énergies très proches des bandes permises (bande de conduction ou bande de Valence). On introduit à ces fins des impuretés dans le semi-conducteur (du bore dans du silicium, par exemple) pour fournir ces porteurs de charges. Si on fournit des électrons qui sont des porteurs de charges négatifs, on parlera de dopage N. Si les porteurs de charges sont des trous créés dans la bande de Valence, on parlera de dopage P.
24. L'assemblage de deux semi-conducteurs P et N est la brique de base de toute l'électronique moderne, celle qui permet de construire des transistors (aux innombrables applications : amplificateurs, interrupteurs, portes logiques, etc.). Le bond technologique dû à l'invention du transistor dans les années 1950 repose donc sur tout l'édifice théorique et expérimental de la mécanique quantique. L'invention du transistor a valu le prix Nobel en 1956 à Brattain, Shockley et Bardeen. Le premier transistor mesurait quelques centimètres, désormais la concentration dans un circuit intégré atteint plusieurs millions de transistors au cm². Il existe même une célèbre loi empirique, proposée par Moore, qui observe que le nombre de transistors que l'on peut placer sur un microprocesseur de surface donnée double tous les 18 mois. Cette loi est assez bien vérifiée en pratique depuis 50 ans !
25. En mécanique quantique, il existe un balancier permanent entre théorie et expérience. La technologie peut induire de nouvelles découvertes fondamentales, et réciproquement.
Ainsi, le transistor à effet de champ permet de créer à l'interface entre un oxyde et un semi-conducteur un gaz d'électrons bidimensionnel, qui a conduit à la découverte de « l'effet Hall quantifié ».
26. Cette nappe d'électron présente une propriété remarquable : lorsqu'on applique un champ magnétique perpendiculaire à sa surface, la chute de potentiel dans la direction transverse au courant se trouve quantifiée de manière très précise. Ce phénomène est appelé effet Hall entier (Klaus von Klitzing, prix Nobel 1985) ou effet Hall fractionnaire (Robert Laughlin, Horst Stormer et Daniel Tsui, prix Nobel 1998).
27. L'explication de ces phénomènes fait appel à des concepts fondamentaux de la physique moderne comme le phénomène de localisation d'Anderson, qui explique l'effet des impuretés sur la propagation des électrons dans un solide. Nous voyons donc encore une fois cette interaction permanente entre technologie et science fondamentale.
La supraconductivité :
28. Il existe donc des métaux, des isolants, des semi-conducteurs. Il existe un phénomène encore plus extraordinaire : la supraconductivité. Il s'agit de la manifestation d'un phénomène quantique à l'échelle macroscopique : dans un métal « normal », la résistance tend vers une valeur finie non nulle lorsque la température tend vers 0 alors que dans un métal supraconducteur, la résistance s'annule en dessous d'une certaine température dite critique. Les perspectives technologiques offertes par la supraconductivité paraissent donc évidentes car il serait alors possible de transporter un courant sans aucune dissipation d'énergie. Le problème est de contrôler la qualité des matériaux utilisés, et il serait évidemment merveilleux de pouvoir réaliser ce phénomène à température ambiante...
29. La supraconductivité a été découverte par Kammerlingh Onnes en 1911 quand il refroidit des métaux avec de l'hélium liquide à une température d'environ 4 degrés Kelvin.
30. Ce phénomène ne fut expliqué que 46 ans plus tard, car il fallait tout l'édifice de la mécanique quantique pour réellement le comprendre. Nous devons cette explication théorique à Bardeen, Cooper et Schieffer à la fin des années 1950.
31. Dans un métal, il y a une source naturelle d'attraction entre les électrons. On peut imaginer que chaque électron déforme légèrement le réseau cristallin et y attire un autre électron pour former ce que l'on nomme une paire de Cooper. Ces paires peuvent échapper au principe d'exclusion de Pauli car elles ont un Spin 0. Elles se comportent alors comme des bosons et non plus comme des fermions, et s'écroulent dans un même état d'énergie pour former un état collectif. Le matériau a un comportement analogue à l'état de superfluide de l'hélium 4. Toutes ces paires de Cooper sont donc décrites par une unique fonction d'onde, c'est un état quantique macroscopique. Il existe donc de nombreuses propriétés qui révèlent cet état quantique à l'échelle du matériau.
32. A la fin des années 1950, la théorie de la supraconductivité est enfin comprise et le but est maintenant d'augmenter la température critique. Une véritable course est alors lancée, mais celle-ci n'eut pas que des succès. Alors que en 1911 Kammerlingh Onnes observait la supraconductivité du mercure à une température de 4K, à la fin des années 80, nous en étions encore à environ 30K. En 1986, cette température critique fait un bond considérable et se trouve aujourd'hui aux alentours des 140K. La température de l'azote liquide étant bien inférieure à ces 140K, il est désormais moins coûteux d'obtenir des supraconducteurs.
33. Ces supraconducteurs possèdent des propriétés étonnantes. Par exemple, un champ magnétique ne peut pénétrer à l'intérieur d'un matériau supraconducteur. Ceci permet de faire léviter un morceau de supraconducteur en présence d'un champ magnétique !
34. Cette « lévitation magnétique » offre de nouvelles perspectives : il est par exemple possible de faire léviter un train au dessus de ses rails, il faut alors très peu d'énergie pour propulser ce train à de grandes vitesses. Un prototype japonais a ainsi atteint des vitesses de plus de 500km/h.
Les supraconducteurs permettent de créer des champs magnétiques à la fois très intenses et contrôlés, et servent donc pour l'imagerie par résonance magnétique (IRM). Ceci offre bien sûr de nouvelles possibilités en imagerie médicale.
Les supraconducteurs peuvent être également utilisés pour créer de nouveaux outils pour les physiciens : dans le nouvel accélérateur de particules au CERN à Genève, les aimants sont des supraconducteurs.
35. L'année 1986 voit une véritable révolution dans le domaine de la supraconductivité. Bednorz et Muller découvrent en effet une nouvelle famille de matériaux supraconducteurs qui sont des oxydes de cuivre dopés. En l'absence de dopage, ces matériaux sont des isolants non-conventionnels, dans lesquels le niveau de Fermi semble être dans une bande permise (isolants de Mott). La température critique de ces supraconducteurs est bien plus élevée que dans les supraconducteurs conventionnels : le record est aujourd'hui de 138 degrés Kelvin pour un composé à base de mercure. C'est une très grande surprise scientifique que la découverte de ces nouveaux matériaux, il y a près de vingt ans.
Des matériaux aux propriétés étonnantes :
36. Ces sont donc des isolants d'un nouveau type, dits de Mott. Ces matériaux sont isolants non pas parce que leur couche extérieure est pleine mais parce que les électrons voulant sauter d'un atome à l'autre par effet tunnel se repoussent mutuellement.
37. La compréhension de la physique de ces matériaux étonnants est un grand enjeu pour les physiciens depuis une vingtaine d'années. En particulier, leur état métallique demeure très mystérieux et ne fait à ce jour pas le consensus de la communauté scientifique.
38. Il est également possible de fabriquer des métaux à partir de molécules organiques, nous obtenons alors des « plastiques métalliques » pouvant également devenir supraconducteurs en dessous d'une certaine température (découverte par Denis Jérome et son équipe à Orsay en 1981). Le diagramme de phase des supraconducteurs organiques est au moins voire plus compliqué que celui des oxydes métalliques.
39. Actuellement, des recherches sont menées sur des alliages ternaire, et quaternaires qui semblent offrir encore de nouvelles propriétés. Par exemple, les oxydes de manganèse ont une magnétorésistance colossale, c'est-à-dire que leur résistance varie beaucoup en présence d'un champ magnétique. Cette particularité pourrait être utilisée dans le domaine de l'électronique de Spin, où on utilise le Spin des électrons, en plus de leur charge pour contrôler les courants électriques. Les oxydes de Cobalt, quant à eux, présentent la propriété intéressante d'être des thermoélectriques (i.e capables de produire un courant électrique sous l'action d'un gradient de température).
Il existe donc de très nombreux défis dans ce domaine, ils sont de plusieurs types. D'abord, l'élaboration de structures peut permettre de découvrir de nouveaux matériaux aux nouvelles propriétés qui soulèvent l'espoir de nouvelles applications.
Mais il existe aussi des défis théoriques : est il possible de prédire les propriétés d'un matériau à partir des lois fondamentales ? Des progrès importants ont été réalisés durant la seconde partie du XXème siècle et ont valu à Walter Kohn le prix Nobel de chimie. Cependant, ces méthodes ne sont pas suffisantes pour prédire la physique de tous les matériaux, en particulier de ceux présentant de fortes corrélations entre électrons. Les puissances conjuguées de la physique fondamentale et calculatoire des ordinateurs doivent être mise à service de ce défi. Par ailleurs, de nouveaux phénomènes apparaissent dans ces matériaux qui amèneront certainement des progrès en physique fondamentale.
La chimie, la physique et l'ingénierie des matériaux et de leurs propriétés électroniques semblent donc avoir de beaux jours devant eux !

 

VIDEO              CANAL  U           LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

LA LUMIÈRE

 

Texte de la 215e conférence de l’Université de tous les savoirs donnée le 2 août 2000.


La lumière
par Michel Blay
Ce n'est qu'au XVIIe siècle que les théories physiques de la lumière, c'est-à-dire l'étude de la lumière et des phénomènes lumineux au sens où nous l'entendons encore aujourd'hui, connurent leur véritable essor. En effet, si depuis l'Antiquité les travaux sur la lumière n'ont pas manqué, la plupart d'entre eux s'inscrivent dans le cadre d'une réflexion centrée sur le problème de la vision et du regard plutôt que sur celui de la nature de la lumière.
C'est Johannes Kepler (15711630), prolongeant les remarquables études de Ibn-al-Haitham connu en Occident sous le nom d'Alhazen (c.9651039 ?), de Robert Grosseteste (11751253), de John Pecham (c.12301292) et de Witelo ou Vitelion (c.1230c.1285), qui assimile définitivement dans ses Paralipomènes à Vitelion (Francfort, 1604) l'œil à un dispositif optique conduisant à la formation d'une image réelle sur la rétine. L'optique physique acquiert son autonomie ; l'analyse de la lumière devient, en se libérant du problème de la sensation visuelle, un véritable objet de recherche.
Une nouvelle distribution du savoir se met alors en place avec Johannes Kepler et René Descartes (15961650) amenant à retenir trois champs d'investigation : la nature physique de la lumière, la transmission de l'image rétinienne au cerveau (anatomie, physiologie), et la représentation mentale. Nous ne nous attacherons ici qu'au premier de ces trois champs d'investigation : l'histoire des théories physiques de la lumière.
La problématique mécaniste cartésienne
Le développement des théories physiques de la lumière au XVIIe siècle est associé, le plus souvent, à la construction de modèles mécaniques : comment expliquer à l'aide des seuls concepts de la physique mécaniste les propriétés connues de la lumière comme la propagation rectiligne, la réflexion, la réfraction ou la genèse des couleurs ?
Ce type d'approche a été véritablement initié par Descartes. Dans le monde plein cartésien la propagation de la lumière est caractérisée par une inclination au mouvement, une poussée, un effort, c'est-à-dire qu'elle se fait sans transport de matière.
Il n'en reste pas moins que dans les premières pages de la Dioptrique, publiée en 1637 après le Discours de la méthode avec la Géométrie et Les Météores, Descartes introduit trois « comparaisons » pour aider à concevoir la lumière « en la façon qui me semble la plus commode, pour expliquer toutes celles de ses propriétés que l'expérience nous fait connaître, et pour déduire ensuite toutes les autres qui ne peuvent pas si aisément être remarquées ». Or, dans la troisième comparaison (après celles du bâton de l'aveugle et de la cuve de raisin), consacrée à l'explication des phénomènes de la réflexion et de la réfraction, Descartes fait appel au mouvement d'une balle rencontrant une surface. C'est de l'étude de cette comparaison et de ce mouvement, dans le Discours second, que Descartes tire sa fameuse loi de la réfraction exprimant que le sinus de l'angle de réfraction et le sinus de l'angle d'incidence sont dans un rapport constant (l'expression de ce rapport, déjà présente dans un manuscrit arabe de Ibn Sahl au IXe siècle, a été retrouvée également au début du XVIIe siècle par divers savants comme Thomas Harriot et W. Snell) et que, de cela, il conclut que la lumière se déplace plus « aisément » dans les corps durs comme le cristal que dans les corps mous comme l'air.
Ce résultat est contesté dès 1657 par Pierre Fermat dans sa correspondance avec Marin Cureau de la Chambre. Fermat, en s'appuyant à la fois sur le principe affirmant que la lumière suit toujours la trajectoire qui minimise le temps du déplacement ainsi que sur sa nouvelle méthode mathématique de l'adégalisation, parvient à retrouver la loi de la réfraction mais en considérant que la vitesse de propagation de la lumière est plus grande dans les milieux rares que dans les denses.
Si la propagation de la lumière est bien considérée par Descartes comme une inclination au mouvement, sans transport de matière, la troisième comparaison de la Dioptrique, celle de la balle, ouvre cependant la voie à une conception qui pourrait être corpusculaire de la lumière. Ainsi, tant chez Descartes que dans les discussions engagées par Fermat, se fait déjà jour le grand débat qui va gouverner le développement des théories physiques de la lumière : celle-ci est-elle une onde, c'est-à-dire un mouvement sans transport de matière ou un déplacement de matière (corpuscules, fluides, etc.) ?
Avant d'en venir à l'analyse et aux enjeux épistémologiques de ce débat, débat qui prend sa forme définitive avec les travaux de Christiaan Huygens (1629-1695) et de Isaac Newton (1642-1727), il importe tout d'abord de faire le point sur les principales découvertes expérimentales qui ont marqué la deuxième moitié du XVIIe siècle.
Découvertes expérimentales
La diffraction
Les premières expériences de diffraction de la lumière ont été réalisées par Francesco-Maria Grimaldi (16181663) et présentées dans son gros ouvrage intitulé : Physico-Mathesis de Lumine, Coloribus et Iride (Bononiae, 1665). C'est d'ailleurs Grimaldi qui introduit le terme de diffraction pour caractériser les nouveaux phénomènes qu'il vient de découvrir.
Utilisant un faisceau très étroit de lumière naturelle, Grimaldi observe, par exemple dans une pièce sombre que lorsqu'un petit objet est placé dans un cône lumineux émergeant d'une petite ouverture, l'ombre portée sur un écran blanc n'est pas, comme le suggère l'optique géométrique, nettement séparée de la zone lumineuse, mais que l'ombre est bordée par trois traînées lumineuses (« series lucidae ») et colorées.
Grimaldi multiplie les expériences et, à l'issue de ces travaux, rejette l'idée que les « series lucidae » pourraient être dues à la lumière directe, ou à de la lumière réfractée (les « series » ne dépendent pas de la nature de l'obstacle), ou bien encore à de la lumière réfléchie (les « series » ne dépendent pas du bord de l'obstacle). Grimaldi en conclut que la lumière doit se propager d'une autre façon bien distincte des trois précédentes et à laquelle il faut donner un nom : la diffraction.
L'observation de phénomènes d’ « interférence »
Les premiers travaux véritablement coordonnés sur ces phénomènes se rapportent aux observations des couleurs à la surface des lames minces. Ils furent l'œuvre de Robert Boyle (16271691) et apparurent dans les Experiments and Considerations Touching Colours (Londres, 1664).
Ces études sont prolongées par celles de Robert Hooke (1635-1703) dans son ouvrage consacré en particulier à des observations microscopiques intitulé Micrographia (Londres, 1665). Ce dernier remarque qu'une coloration apparaît sur une lame transparente limitée par deux surfaces réfléchissantes, de réfringence différente de celle de la lame, lorsque son épaisseur est comprise entre une limite supérieure et une inférieure au-delà desquelles ne peut être perçue aucune couleur, la lame devenant transparente. Dans le prolongement de ces expériences il réalise, entre autres, en plaçant deux lentilles l'une contre l'autre, celle dite aujourd'hui des anneaux de Newton. Ces phénomènes s'interprètent aisément depuis le début du XIXe siècle en termes d'interférence.
La biréfringence
En 1669, Erasme Bartholin (1625-1698) découvre la biréfringence en manipulant des cristaux de spath d'Islande (calcite). Il publie ses observations dans un petit Mémoire intitulé Experimenta crystalli Islandici disdiaclastici (Copenhague, 1669). Il y décrit en particulier comment ces cristaux dédoublent les images des objets ou des écrits sur lesquels ils sont placés et introduit les termes utilisés encore aujourd'hui, de réfraction ordinaire et de réfraction extraordinaire.
La vitesse de la lumière
En 1676, l'astronome Ole Römer (1644-1710), alors qu'il séjourne à l'Observatoire de Paris tout nouvellement bâti, déduit des irrégularités apparentes de la période des satellites de Jupiter une méthode de mesures de la vitesse de la lumière.
Ses résultats sont publiés dans le Journal des Sçavans du lundi 7 décembre 1676. Römer parvient à une valeur approximative de la vitesse de la lumière de 215 000 kilomètres par seconde. Il montre ainsi que l'hypothèse cartésienne de la propagation instantanée n'est pas fondée. L'ensemble de ces mesures et observations impose une refonte complète de l'optique cartésienne.
La mise en place d'une nouvelle théorie cohérente de la nature de la lumière, susceptible de rendre compte de tous les nouveaux résultats, devient alors une tâche d'une extrême difficulté qui va occuper les savants jusqu'au milieu du XIXe siècle. Elle passe d'abord par les travaux newtonien et la construction du fait général de la multiplicité des lumières homogènes.
Newton : le fait général de la multiplicité des lumières homogènes
Alors que l'épidémie de peste qui va ravager l'Angleterre jusqu'à l'incendie de Londres en 1666 conduit à la fermeture de l'Université, Newton mène dans son Lincolnshire natal ses premières recherches sur la lumière et les couleurs. Celles-ci apparaissent dans des Carnets de notes rédigés principalement en 1664 et 1666. A cette époque, les théories de la genèse des couleurs invoquent encore très largement les thèses aristotéliciennes. Celles-ci considèrent la lumière blanche comme pure et homogène tandis que les couleurs, caractérisées par leur éclat ou leur force, naissent d'une modification (atténuation ou obscurcissement) de la lumière incidente. La succession des couleurs est produite lorsque la lumière devient plus faible ou plus sombre : le rouge, couleur éclatante, par excellence contient plus de blanc et moins de noir que les autres couleurs, le vert plus de noir et moins de blanc que le rouge et le violet encore plus de noir. Une telle conception dénuée de tout support quantitatif susceptible de préciser le sens des concepts de force et de faiblesse, d'obscurité et de luminosité, ne trouve son fondement, son intelligibilité qu'en se référant directement aux impressions perçues par nos sens, à la manière dont subjectivement nous nous sentons affectés par telle ou telle couleur.
Quelques exemples permettent d'illustrer le sens de cette théorie et d'en préciser les diverses formes. Ainsi Giambattista della Porta (1533-1615) décrit ses expériences avec un prisme dans la proposition 26 de son De Refractione Optices Parte libri novem (Naples, 1558). Dans son texte, Porta stipule clairement que les couleurs dépendent de l'épaisseur du cristal traversé par la lumière, c'est-à-dire du degré de subtilité ou de finesse de la matière : les couleurs les plus vives (le rouge et le jaune) apparaissent vers le sommet, et les plus sombres (le vert et le bleu) vers la base.
Une analyse tout à fait semblable est donnée par Marco Antonio de Dominis (1566-1624) dans son De radiis visus et lucis in vitris perspectivis et iride tractatus (Venise, 1611) : « Nous pouvons dire qu'il y a trois couleurs intermédiaires. La première incorporation d'opacité qui assombrit d'une certaine quantité le blanc, engendre le rouge, et cette dernière est la plus lumineuse (maxime lucidus) des couleurs intermédiaires réparties entre les deux extrêmes, le blanc et le noir, comme cela apparaît de façon manifeste avec l'expérience du prisme (in vitro oblongo triangulari) ; les rayons du soleil qui pénètrent dans la partie la plus proche du sommet, dans celle qui a la moindre épaisseur et par là-même le moins d'opacité, émergent rouge ; ensuite pour une épaisseur plus importante apparaît le vert et enfin, le violet pour l'épaisseur maximale [...] si l'opacité augmente apparaît le violet ou le bleu qui est la couleur la plus obscure (maxime obscurus) [...] ».
Au cours du XVIIe siècle, se développent des recherches influencées par les thèses de la philosophie mécaniste et les travaux de Descartes. Ces recherches reprennent implicitement, dans le cas des théories de la genèse des couleurs, à travers la mise en place de modèles mécaniques explicites, les conceptions traditionnelles. Ainsi Descartes, prolongeant le modèle mécanique de la lumière dont nous avons précédemment donné les principaux éléments, parvient à l'idée que la multiplicité des couleurs est la représentation subjective des différentes tendances à la rotation, rotation acquise par exemple lors d'une réfraction, des boules du deuxième élément dont l'effort rectiligne correspondait à la transmission de la lumière de la source vers l'œil. Un tel modèle mécanique est dénué de tout support quantitatif : comment pourrait-on mesurer la vitesse angulaire de ces boules parfaitement inobservables et aux mouvements ou tendances aux mouvements, d'ailleurs hypothétiques ? Par conséquent, comment se fait-il que Descartes, indépendamment de toute détermination quantitative, puisse trouver, dans la correspondance établie entre la couleur perçue et la force avec laquelle les hypothétiques globules tendent à tourner, une explication satisfaisante ? Pourquoi estime-t-il avoir pleinement rendu compte de la genèse des couleurs en associant simplement, dans le cadre de son modèle mécanique, d'une part le rouge avec les globules qui tendent à tourner avec le plus de force et, d'autre part, le bleu avec les globules qui tendent à tourner avec le moins de force ?
En fait dénuées de tout support quantitatif, ces relations associant telle vitesse de rotation ou de tendance à la rotation, à telle couleur, ne peuvent être qu'arbitraires, inspirées par la conceptualisation traditionnelle de style aristotélicien qui relie la force avec la teinte rouge, la faiblesse ou la diminution de force avec la teinte bleue. C'est la correspondance entre l'intensité de la perception subjective (le rouge par son éclat nous affectant plus que le bleu) et la force de la propension au mouvement de rotation qui donne à cette explication, aux yeux de Descartes, toute son intelligibilité et toute sa légitimité. Quelques années plus tard, en 1664, Robert Hooke imagine dans la Micrographia qu'au cours de la réfraction une obliquité apparaît dans la partie de l'impulsion originellement normale à la direction de propagation de la lumière (la notion du front d'onde ne sera précisée que par Christiaan Huygens en 1690). C'est cette obliquité qui permet à Robert Hooke d'expliquer la genèse des couleurs en considérant qu'une extrémité de l'impulsion oblique est plus affaiblie que l'autre et qu'ainsi se trouvent engendrées les différentes couleurs.
Ce cadre explicatif mécaniste qui fonde son intelligibilité sur des considérations subjectives est largement partagé par les contemporains de Newton. Il lui fournit le terreau dans lequel vont pouvoir s'enraciner ses recherches initiales.
Il les commence en 1664, par des expériences, dites aujourd'hui d'iridescence, inspirées par l'idée que les couleurs naissent de la lumière et de l'obscurité, à l'occasion desquelles, observant à travers un prisme deux bandes contiguës l'une claire et l'autre sombre, il constate la présence de diverses colorations dans la zone de contact. Puis, guidé par une conception corpusculaire de la lumière, il parvient en 1665 à une interprétation qui associe un modèle hétérogène de la lumière blanche (les corpuscules constituant les rayons incidents possèdent soit des vitesses soit des masses de grandeurs différentes) et un processus de la genèse des couleurs qui se situe dans le prolongement direct de la version mécaniste des théories traditionnelles de la modification. A cette date la position de Newton reste donc très classique, du point de vue de la genèse des couleurs. Il s'attache d'ailleurs encore à l'automne 1665, comme ses contemporains, à tailler des verres de forme autre que sphérique pour résoudre le délicat problème de l'achromatisme des lentilles : on supposait alors que des verres de forme autre que sphérique pourraient remédier à ce défaut.
Au début de l'hiver 1666, Newton est cependant en possession de l'essentiel de sa théorie. C'est donc entre ces deux périodes qu'il a conçu son hypothèse définitive : il n'y a pas de surface susceptible de permettre à tous les rayons de converger en un foyer, c'est-à-dire qu'il n'y a pas de telle surface si la lumière est un mélange hétérogène de rayons différemment réfrangibles. Cette nouvelle hypothèse va constituer, pour Newton, un guide privilégié ouvrant la voie à une étude renouvelée des phénomènes de la lumière et des couleurs.
Newton reprend en premier lieu certaines des expériences de Robert Boyle contenues dans ses Experiments and Considerations Touching Colours (Londres 1664). Ses comptes rendus expérimentaux comparés à ceux donnés par Boyle d'expériences identiques sont très instructifs. Boyle, après avoir indiqué qu'une feuille d'or très fine apparaissait comme « pleine de pores », décrit le changement de couleur observé lors de la transmission de la lumière : « Mais la lumière qui traversait ces pores était, lors de son passage, si tempérée par de l'ombre et modifiée que l'œil ne discernait plus une couleur or, mais une couleur bleu-vert ». Quant à Newton, il écrit : « les rayons réfléchis par une feuille d'or sont jaunes mais ceux qui sont transmis sont bleus comme cela apparaît en tenant une feuille d'or entre l'œil et une chandelle ». La comparaison de ces comptes rendus souligne une différence radicale dans les perceptions du même phénomène par les deux savants. Si newton perçoit des rayons réfléchis jaunes et des rayons transmis bleus, Boyle perçoit dans la lumière transmise non pas des rayons d'une nature spécifique, mais de la lumière blanche modifiée et altérée dans sa nature par un mélange d'ombre. Boyle et Newton ne voient plus la même chose lorsqu'ils observent leurs feuilles d'or. De telles remarques pourraient être multipliées, mais c'est en décrivant les résultats fondamentaux de ses travaux sur le prisme que Newton rompt de la façon la plus nette avec les analyses classiques. En 1666 donc, Newton renouvelle totalement l'expérience du prisme en ce sens que, contrairement à ses contemporains, il se place systématiquement dans une pièce sombre, utilise un diaphragme pour limiter le faisceau incident de lumière solaire, installe le prisme dans une position correspondant au minimum de déviation, place l'écran à une grande distance du prisme, observe une tache spectrale d'une forme bien déterminée. Des conditions expérimentales aussi bien définies et éloignées des pratiques usuelles des contemporains soulignent la spécificité de l'expérience newtonienne du prisme et la nouveauté du regard, qui est maintenant le nôtre, de Newton. Loin d'être celle d'où aurait été déduite, comme on a l'habitude de le croire, toute la théorie, l'expérience du prisme apparaît bien plutôt comme une expérience mise en place pour développer l'hypothèse formulée antérieurement concernant la réfrangibilité spécifique des différents rayons. L'expérience du prisme au sens newtonien est une expérience construite et non donnée. Le regard, à présent porté sur la lumière et les couleurs par Newton inaugure, à proprement parler, le nôtre.
C'est en 1672 que Newton, alors qu'il vient d'être nommé fellow de la Royal Society pour son télescope à réflexion — il sait maintenant que la taille des verres est inutile pour résoudre les problèmes de l'achromatisme —, rédige sa célèbre lettre à Henry Oldenburg alors secrétaire de la Royal Society. Cette lettre, présentée aux membres de cette assemblée à la séance du 8 février 1672 puis publiée dans le numéro 80 du 19 février des Philosophical Transactions (3075-3087), constitue le véritable texte fondateur de la théorie newtonienne de la lumière et des couleurs. Il restera jusqu'en 1704 date de publication de l'Opticks, le seul exposé complet de sa pensée.
Sans entrer dans le détail de cette lettre, qui donne une refonte dans un style d'inspiration très baconien, requis par les membres de la Royal Society, des travaux que nous venons de présenter, Newton y formule sa théorie, sous sa forme définitive en s'appuyant sur son Experimentum crucis. Il va sans dire que le style de cette lettre associé à la mise en place de l'Experimentum crucis aidera fortement à créer l'image d'un newton pour lequel ses acquis semblent résulter de la saisie d'un pur fait d'expérience comme s'il lisait directement les secrets de la nature.
Dans cet Experimentum crucis Newton utilise deux prismes et deux planches percées. Le premier prisme est placé à proximité du trou pratiqué dans le volet. Les rayons émergeant de ce prisme, produisant le spectre, passent par un petit trou réalisé dans l'une des deux planches, placée juste derrière le prisme. A 12 pieds de cette dernière, Newton fixe la deuxième planche percée également d'un trou et derrière laquelle il installe le deuxième prisme. Ce dernier peut ainsi recevoir les rayons émergeant du premier prisme. Par la rotation de ce dernier autour de son axe, tout en maintenant fixes les deux planches et le deuxième prisme, les rayons de telle ou telle espèce émergeant du premier prisme sont amenés en face du premier trou. Cela étant, seul le faisceau joignant les deux trous dans les deux planches et dont la direction, par conséquent, est constante, tombe sur le deuxième prisme (chaque faisceau parvient ainsi sous la même incidence au deuxième prisme). De cette façon, Newton peut observer sur le mur les diverses taches colorées correspondant aux divers rayons réfractés par le deuxième prisme, et constate alors que les plus réfractés (ou les moins réfractés) par le premier prisme sont encore ceux qui le sont le plus (ou le moins) par le deuxième prisme : « Et je vis, par les différentes positions de ces lieux, que la lumière tendant vers cette extrémité de l'image vers laquelle la réfraction du premier prisme avait lieu, subissait vraiment dans le second prisme une réfraction beaucoup plus importante que la lumière tendant vers l'autre extrémité ».
Là-dessus, Newton conclut que la lumière blanche est constituée de rayons différemment réfrangibles : « Et ainsi nous décelâmes que la véritable cause de la longueur de cette image n'était pas autre chose que celle-ci, à savoir que la lumière se composait de rayons différemment réfrangibles qui, sans égard à la différence de leurs incidences, étaient suivant leur degré de réfrangibilité transmis vers diverses parties du mur ».
Dans la deuxième partie de sa lettre de 1672, Newton remarque que l'experimentum crucis montre que les rayons traversant le deuxième prisme conservent tout aussi bien leur couleur que leur degré de réfrangibilité. À chaque couleur correspond un certain degré de réfrangibilité, de telle sorte qu'entre la réfrangibilité et la couleur s'instaure une relation biunivoque. Par conséquent, corrélativement à leurs différences dans leurs degrés de réfrangibilité, les rayons diffèrent « dans leur disposition à présenter telle ou telle couleur particulière ». Ainsi Newton peut conclure que « les couleurs ne sont pas des qualifications de la lumière dérivées de réfractions ou de réflexions sur les corps naturels (comme on le croit en général), mais des propriétés originelles et innées différentes suivant les rayons » de la même façon que le sont leurs degrés de réfrangibilité. Puis Newton établit que la couleur ou le degré de réfrangibilité d'un rayon donné sont inaltérables, soit par réfraction, soit par réflexion, soit encore « d'aucune autre façon que j'ai pu jusqu'à présent étudier ». Il n'en reste pas moins que des « transmutations apparentes de couleurs peuvent se produire là où s'opère tout mélange de rayons de diverses natures ». En fait, il y a deux sortes de couleurs : « les couleurs simples et primitives d'une part, leurs mélanges d'autre part ». Les couleurs primitives ou primaires étant « le rouge, le jaune, le vert, le bleu, un violet pourpre, avec aussi l'orange, l'indigo et une variété indéfinie de nuances intermédiaires ». Parmi tous les mélanges, « la composition la plus surprenante et la plus extraordinaire est celle du blanc ». Cette couleur est, de toutes celles obtenues par mélanges, la plus complexe puisque son analyse par le prisme fournit toutes les couleurs du spectre. Afin d'illustrer ce résultat, Newton imagine une expérience permettant de recomposer la lumière blanche à partir de la lumière dispersée par un prisme. Pour cela, il place une lentille convergente sur le trajet des rayons émergeant du prisme et observe que « la lumière ainsi reproduite était entièrement et parfaitement blanche, ne différant pas du tout de façon sensible de la lumière directe du soleil, sauf lorsque les verres que j'employais n'étaient pas suffisamment clairs, car dans ce cas, ils la modifieraient quelque peu vers leur couleur ». Newton conclut en affirmant que « de cela, par conséquent, il s'ensuit que le blanc est la couleur normale de la lumière ; car la lumière est un agrégat complexe de rayons dotés de toutes sortes de couleurs, qui sont dardés de façon désordonnée des différents points des corps luminescents ». Dans cette dernière proposition, la thèse de l'hétérogénéité prend sa forme définitive, et l'interprétation de l'experimentum crucis acquiert toute sa force. Puisqu'à chaque degré de réfrangibilité correspond une couleur déterminée, par conséquent, les rayons susceptibles d'engendrer telle ou telle sensation de couleur et préalablement mélangés dans la lumière blanche sans perdre leur spécificité, sont, par le prisme, simplement « séparés et dispersés suivant leurs inégales réfractions sous une forme oblongue dans une succession ordonnée allant du rouge vif le moins réfracté au violet le plus réfracté ».
Dans ce texte de 1672, comme dans l'Optique de 1704, Newton introduit l'idée d'un nombre indéfini de lumières homogènes où prédomine sept tonalités principales. Chaque rayon se trouve caractérisé, non pas par une impression subjective, mais par un degré de réfrangibilité de telle sorte qu'il est possible, sur la base de la mesure de ces degrés de réfrangibilité de construire une échelle quantitative des rayons colorés, c'est-à-dire des rayons qui engendrent telle ou telle sensation de couleur, et ainsi, de parvenir à la mathématisation des phénomènes de la couleur (arc-en-ciel, lames minces). Newton peut ainsi expliquer pour quelles raisons telle ou telle couleur apparaît en tel ou tel endroit dans le ciel, s'il s'agit par exemple d'un arc-en-ciel, en revanche il ne dit pas dans ce cadre théorique en quoi dans sa nature le rouge diffère du bleu, ni a fortiori comment s'effectue la perception des couleurs.
À l'issue de ce travail expérimental se trouve établi, non pas comme le laisse entendre Newton l'hétérogénéité de la lumière blanche mais le fait de la multiplicité des rayons différemment réfrangibles tel qu'à chaque degré de réfrangibilité corresponde une couleur donnée ; ou de façon plus concise, le fait de la multiplicité des lumières homogènes ou monochromatiques. Quelle est la nature de ce fait de la multiplicité des lumières homogènes ?
Ce fait, à partir duquel tous les phénomènes de la lumière et des couleurs vont être maintenant interprétés, présente un intérêt épistémologique tout particulier. D'une part, même s'il peut apparaître au physicien moderne comme une donnée quasi immédiate de l'expérience, ce n'est là qu'une simple impression produite par trois siècles d'utilisation et de confirmations successives dissimulant en réalité son origine hypothétique et conjecturale (voir supra) ; d'autre part, ce fait n'est établi qu'avec l'aide de l'Experimentum crucis qui, pour sa part, n'est construit que dans la perspective de fournir un moyen indirect pour saisir cette réalité non immédiatement perçue que constitue la multiplicité des lumières homogènes.
Ainsi, la démarche, par laquelle ce fait qui n'a pas d'existence au niveau des objets de la réalité immédiate est établi ou pour mieux dire construit, relève pour sa plus grande part du raisonnement, même si le recours à l'expérience est fondamental. A la réalité immédiatement perçue que s'efforçaient de décrire les théories traditionnelles, Newton a substitué un fait général qui va devenir le véritable objet dont traitera la science de la genèse des phénomènes de la couleur, son véritable point d'enracinement.
Nous avons souligné, plus haut, que ce qui se trouvait établi par Newton n'était pas l'hétérogénéité de la lumière blanche. Il importe de revenir brièvement sur ce point. La démonstration newtonienne associée à la mise en place de l'Experimentum crucis peut paraître concluante et pourtant, en aucun cas, elle n'est réellement décisive car elle repose sur l'idée que le résultat établi sur chaque rayon pris séparément est encore valable lorsque tous les rayons se trouvent mélangés. Pourquoi la lumière blanche ne serait-elle pas modifiée lors de la première réfraction de telle sorte qu'elle acquiert de nouvelles propriétés inaltérables aux réfractions suivantes ? ou bien de façon plus précise : pourquoi la première réfraction n'engendrerait-elle pas la multiplicité de lumières monochromatiques à partir d'une lumière blanche homogène ? Il est clair qu'une telle interrogation est essentiellement guidée par des conceptions homogènes de la lumière blanche qui, par conséquent, ne semblent pas dans cette perspective a priori incompatibles avec les résultats de l'Experimentum crucis. Aussi les premières réactions anti-newtoniennes des contemporains viendront-elles principalement des tenants de l'optique des milieux qui perçurent facilement l'insuffisance de la démonstration de Newton ; mais c'est seulement au XIXe siècle que Georges Gouy, aidé d'un outillage mathématique perfectionné put conduire jusqu'à sa conclusion la critique de l'Experimentum crucis en répondant clairement aux questions posées ci-dessus. En revanche, l'interprétation newtonienne de l'Experimentum crucis se comprend parfaitement si l'on se place d'emblée comme Newton dans le cadre d'une approche corpusculaire de la lumière où le prisme n'a pour rôle que de séparer les divers corpuscules constituant la lumière incidente parvenant sur sa surface. Ainsi l'Experimentum crucis n'est un Experimentum crucis qu'au prix de l'introduction d'une hypothèse supplémentaire, non explicitée clairement par Newton, relative à la structure corpusculaire de la lumière. Une autre interprétation est possible en terme de théorie ondulatoire de la lumière. Cette dernière a donc été formulée par Georges Gouy en 1886 dans un Mémoire intitulé « sur le mouvement lumineux », publié dans le Journal de physique théorique (p. 354-362) puis explicité avec soin par R.W. Wood dans son Optique physique de 1913 ainsi que par P. Fleury et J.P. Mathieu en 1970 dans le Tome V de leur Physique générale et expérimentale :
« [...] Chaque centre lumineux dans un corps incandescent doit émettre des trains d'onde finis. On s'est jadis demandé si l'on devait considérer la lumière blanche comme formée d'un mélange de tout ces trains d'onde ou comme le résultat de leur composition. On sait aujourd'hui que la question est illusoire, en ce sens qu'on ne connaît pas d'expérience permettant de choisir entre les deux conceptions. Dans la première, les trains d'onde existent dans le faisceau de lumière blanche. Le spectroscope les sépare et ils sont capables d'interférer... Du second point de vue, les diverses vibrations émises par la source se composent en un mouvement résultant qui se propage sous la forme d'un train d'onde très court, ne présentant même plus aucun caractère de périodicité, et constituant une pulsation d'énergie rayonnante ».
Il en résulte que les thèses newtoniennes ne représentent qu'une conception possible de la lumière blanche, mais une conception privilégiée, en ce sens qu'elle permet de simplifier considérablement l'étude des phénomènes optiques. Il n'en reste pas moins que les travaux de Gouy impriment un caractère fondamentalement méthodologique au choix de l'interprétation newtonienne.
Cette discussion, associée finalement à la conception physique que l'on se fait de la lumière blanche nous conduit tout naturellement à revenir sur le débat onde/corpuscule.
Ondes et corpuscules
Très rapidement au cours du XVIIe siècle, deux grands courants se dessinent parmi les savants suivant que ceux-ci considèrent que la lumière est un corps ou bien le mouvement d'un corps sans transport de matière. Dans le premier cas, il s'agit des théories dites de l'émission dont le principal représentant est Newton et, dans le second cas, des théories dites des milieux dont le principal représentant est Christiaan Huygens.
Isaac Newton et les théories de l'émission
Il apparaît nettement, tant par la lecture des textes publiés que par celle des manuscrits, que la pensée newtonienne, bien que très prudente, est gouvernée par une conception corpusculaire de la lumière ; c'est d'ailleurs à ce prix que l'experimentum crucis peut être un experimentum crucis. Il faut en effet, comme nous l'avons vu, introduire l'hypothèse corpusculaire pour pouvoir conclure de la multiplicité des lumières homogènes après le premier prisme à la thèse de l'hétérogénéité de la lumière blanche.
Les sources lumineuses, suivant Newton, par exemple le soleil, émettent des corpuscules qui se propagent à travers le vide jusqu'à nos yeux. Une telle théorie permet d'expliquer assez facilement, comme Newton le montre dans la section XIV du Livre I des Philosophiæ Naturalis Principia Mathématicien (Londres, 1687), la propagation rectiligne, la réflexion, la réfraction et la vitesse finie de la lumière. En revanche elle reste pour l'essentiel inopérante dans le cas des autres phénomènes, en particulier lorsqu'interviennent des aspects périodiques. Ainsi, dans le cas des lames minces, Newton imagine sa théorie des Accès qui réintroduit d'une certaine façon la considération d'un milieu interagissant avec les rayons ou, dans un esprit plus strictement corpusculariste, de nouvelles propriétés intrinsèques du rayon comme en témoigne, par exemple, son interprétation du phénomène de la réflexion partielle dont le rôle est si important, aujourd'hui, dans l'étude des phénomènes d'interférence. En effet, comment Newton peut-il interpréter le fait que des rayons soient ou bien transmis ou bien réfléchis en rencontrant une surface réfringente ? La réponse est donnée dans la Proposition XIII de la partie III du livre II de l'Optique (traduction Jean-Paul Marat) : « La raison pour laquelle les surfaces de tous les corps transparents épais réfléchissent une partie des rayons incidents et réfractent le reste, est qu'au moment de leur incidence, ces rayons se trouvent, les uns dans des Accès du facile réflexion, les autres dans des Accès de facile transmission [...] la lumière a ses Accès de facile réflexion et de facile transmission, avant de tomber sur les corps transparents : et il est à croire qu'elle les a dès qu'elle commence à émaner des corps lumineux, et qu'elle les retient durant tout son trajet ».
Ainsi, d'après Newton les Accès appartiennent probablement (« il est à croire [...] ») aux divers rayons dès leur origine de telle sorte qu'en rencontrant une surface réfringente ceux qui sont dans un Accès de facile réflexion sont réfléchis (réflexion partielle), et ceux qui sont dans un Accès de facile transmission, transmis, de façon à donner ensuite naissance, par exemples, aux anneaux colorés. La surface réfringente a donc pour rôle, non pas d'engendrer l'Accès de facile transmission, mais de sélectionner parmi l'ensemble des rayons l'atteignant ceux qui sont dans un état de facile transmission. De ce point de vue, la surface ne joue qu'un rôle d'analyseur (au même titre que le prisme vis-à-vis de la lumière blanche), chaque rayon possédant originellement tel ou tel état. Nous retrouvons dans cette saisie du phénomène le mode caractéristique d'appréhension de l'atomiste Newton.
L'interprétation du phénomène de la diffraction que Newton appelle de façon significative phénomène d'inflexion est de même extrêmement délicate dans le cadre des théories de l'émission. En effet, contrairement à Grimaldi, mais aussi à Robert Hooke qui vient de réaliser des expériences sur cette question au cours des réunions de la Royal Society, Newton n'introduit pas dans ce contexte expérimental l'idée d'un mode spécifique de propagation de la lumière. Pour lui, ces phénomènes résultent simplement d'une multiplicité de réfractions se produisant à proximité de la partie extrême de l'obstacle, soit en raison de la présence d'un milieu éthéré de densité variable entourant et pénétrant l'extrémité de l'objet placé sur le trajet de la lumière (Lettre de Newton à Oldenburg du 7 décembre 1675 ; Correspondence, I, 362 et sq.) soit, comme dans les Principia, en faisant intervenir l'action attractive des corps frôlés sur les particules constituant les rayons : « Et les rayons en passant près des angles des corps opaques ou transparents tels que l'extrémité d'une lame de couteau, d'une pièce de monnaie, d'un morceau de verre, ou de pierre, etc... s'infléchissent autour de ces corps comme s'ils en étaient attirés : c'est ce qu'a découvert Grimaldi il y a longtemps en faisant entrer un rayon de lumière par un trou dans une chambre obscure, et ce que j'ai vérifié » (Livre I, section XIV).
Newton réalise au cours des années 1690 d'intéressantes observations, sans signaler néanmoins la présence de franges à l'intérieur de l'ombre, lorsqu'il présente ses résultats sur la diffraction-inflexion dans la troisième partie de l'Optique.
Christiaan Huygens et les conceptions ondulatoires
À l'inverse de la théorie newtonienne, celle de Huygens s'inscrit pleinement dans le cadre des théories des milieux. Cependant, par son approche très subtile du mode de propagation de la lumière, Huygens renouvelle l'ancien concept géométrique de rayon et dépasse très largement les travaux antérieurs de Thomas Hobbes (1588-1679), Robert Hooke (1635-1703), Isaac Barrow (1630-1677) ou Ignace-Gaston Pardies (1636-1673). En effet, dans le Traité de la lumière (Leyde, 1690), dont les premières rédactions datent de 1677-1678, Huygens compare la lumière au son et, en conséquence, assimile la lumière à la propagation, dans le temps, d'une vibration longitudinale, c'est-à-dire parallèle au rayon, à travers un milieu ou éther matériel. L'analyse du mouvement se produisant dans la matière éthérée conduit Huygens à considérer que tous les points d'une onde — il ne fait pas d'hypothèse sur sa périodicité — peuvent être le siège d'un nouvel ébranlement. Leur enveloppe constitue alors une nouvelle surface d'onde susceptible de se propager indéfiniment : « Il y a encore à considérer dans l'émanation de ces ondes, que chaque particule de la matière, dans laquelle une onde s'étend, ne doit pas communiquer son mouvement seulement à la particule prochaine, qui est dans la ligne droite tirée du point lumineux ; mais qu'elle en donne aussi nécessairement à toutes les autres qui la touchent, et qui s'opposent à son mouvement » (Traité de la lumière, p. 17).
Huygens dégage ainsi le cadre général du célèbre « Principe de Huygens-Fresnel » ou principe de l'enveloppe des ondes élémentaires dont le rôle est si important dans la construction de l'optique de Fresnel et dans la compréhension des phénomènes de diffraction au XIXe siècle, lorsque le développement de l'analyse mathématique permet enfin d'utiliser ce principe de façon pertinente. En effet le modèle proposé par Huygens rend déjà très difficile, à strictement parler, l'interprétation de la propagation rectiligne si l'on ne possède pas une conceptualisation mathématisée adéquate. Newton dans la huitième section de ses Principia intitulée « De la propagation du mouvement dans les fluides » avait déjà soulevé les difficultés liées à la diffusion du mouvement lorsque celui-ci s'effectue dans un fluide ou plus exactement lorsque le fluide sert de support à la transmission du mouvement. Le titre de la Proposition XLII est à cet égard tout à fait révélateur : « Tout mouvement propagé dans un fluide s'éloigne de la ligne droite dans des espaces immobiles ».
S'appuyant toujours sur son modèle théorique Huygens s'attache ensuite à rendre compte de la réfraction. Il est, contrairement à Newton et aux tenants des théories de l'émission, conduit à démontrer, comme Pierre Fermat que la lumière dans le cadre de sa théorie se propage plus vite dans l'air que, par exemple, dans le verre. Ces conséquences divergentes des théories de l'émission et des milieux seront mises à profit dans la première moitié du XIXe siècle pour rejeter, à la suite des expériences d'Hippolyte Fizeau (1819-1896) et de Léon Foucault (1819-1868), les théories de l'émission. En outre, dans la réfraction de Huygens et contrairement par exemple à l'approche hookienne dans la Micrographia, le front d'onde reste perpendiculaire à la direction de propagation.
Huygens consacre le chapitre V de son Traité de la lumière à étudier très longuement, avec beaucoup d'élégance, le phénomène de la double réfraction du spath d'Islande. À cette fin il suppose que deux ondes se propagent avec des vitesses différentes à l'intérieur du spath : l'une ordinaire ou sphérique, l'autre extraordinaire ou elliptique (ellipsoïde de révolution). Il montre alors que la répartition régulière des parties constitutives du spath (réseau rhomboédrique) permet le dédoublement de la vitesse à l'intérieur du cristal et la réfraction des deux ondes conformément aux observations d'Erasme Bartholin.
A la fin de son analyse de la biréfringence Huygens remarque, sans en donner d'interprétation, que les deux rayons issus d'un premier spath n'ont plus relativement à un second les mêmes comportements, et que, suivant les orientations respectives des deux cristaux, le nombre des rayons émergents comme leurs intensités varient.
Quoique Newton ne traite pas du spath d'Islande dans les grandes parties de son Optique, il y consacre cependant, dans le Troisième livre, les Questions 25 et 26. L'opposition existant entre le style de l'optique newtonienne et le style de l'optique hugonienne est saisissante. Newton conclut en effet : « Chaque rayon de lumière a donc deux côtés opposés doués d'une propriété essentielle, d'où dépend la réfraction extraordinaire, et deux autres côtés qui n'ont pas cette propriété [...] » (Optique, traduction de Jean-Paul Marat). Ainsi, de la réflexion partielle à la double réfraction, le rayon lumineux acquiert progressivement de nouvelles propriétés et devient bien complexe.
C'est Etienne-Louis Malus (1775-1812) qui introduit au tout début du XIXe siècle, dans le cadre de sa théorie corpusculariste, le terme de polarisation. Cette théorie, développée quelques années plus tard par Jean-Baptiste Biot (1774-1862), est rapidement supplantée par l'optique ondulatoire fresnelienne reposant sur l'hypothèse de la transversalité des vibrations lumineuses.
Si Huygens a magnifiquement traité de la double réfraction du spath d'Islande, il a, en revanche, laissé de côté l'analyse des phénomènes de la diffraction et des lames minces. Il est remarquable de constater que ces phénomènes, qui seront centraux dans l'élaboration des théories ondulatoires de la lumière au XIXe siècle sont absents des écrits de Huygens. Il n'a, tout simplement, dans le cadre de sa théorie, pu en donner une analyse cohérente et pleinement satisfaisante. Il a donc préféré ne rien présenter à la postérité.
Le dépassement du double aspect de la lumière
Au XVIIIe siècle newtonien et corpusculariste succède, après les expériences de Fizeau et Foucault et les splendides travaux théoriques de Augustin Fresnel (17881827), un XIXe siècle ondulatoire. Celui-ci, tout d'abord marqué par l'hypothétique éther de Fresnel aux propriétés mécaniques difficilement conciliables, est ensuite investi, à partir des années 1870, par la théorie électromagnétique de James Clerk Maxwell (18311879).
Maxwell conclut, sur la base de ses fameuses Equations, que dans le cas d'un signal électromagnétique variable le milieu diélectrique peut être le siège d'ondes transversales dont la vitesse de propagation est similaire à celle de la lumière. Ainsi se trouvent rapprochés l'éther lumineux de Fresnel et l'éther des actions électromagnétiques. Cette intégration de la lumière dans les phénomènes électromagnétiques oriente alors Maxwell vers le délicat problème du mouvement relatif de la terre et de l'éther. Ce problème culmine avec la mise en place en 1887 de la célèbre expérience de Michelson et Morley, expérience qui conduit finalement à conclure qu'il est impossible, au moyen d'une expérience physique quelle qu'elle soit, de détecter le mouvement de la terre par rapport à l'éther. La voie est ouverte pour les théories einsteiniennes.
En 1905, Albert Einstein (18791955) publie simultanément son Mémoire sur l'électrodynamique des corps en mouvement qui pose les bases de la théorie de la relativité et celui sur l'effet photoélectrique qui introduit, en fait, l'hypothèse des quanta de lumière. Ce dernier Mémoire remet donc en question la nature strictement ondulatoire et continue de la lumière défendue au XIXe siècle.
C'est cette « double nature » de la lumière que Louis de Broglie (1892-1987) tente de comprendre et d'interpréter dans ses Recherches sur la théorie des quanta de 1924. Il émet dans sa thèse l'hypothèse que la dualité onde-corpuscule est une propriété générale des objets microscopiques et que la matière présente, comme la lumière, un double aspect ondulatoire et corpusculaire. Cette hypothèse se trouvera très vite confirmée par l'observation de phénomènes de diffraction avec des électrons (Expériences de Davisson et Germer en 1927, de G.P. Thomson en 1928 et de Rupp la même année).
En généralisant la notion d'ondes de matière, Erwin Schrödinger (1887-1961) parvient à l'équation bien connue de propagation de la fonction d'onde représentant un système quantique donné, associé au concept d'amplitude de probabilité qui donne son assise à celui de photon, ni onde ni particule. Finalement, l'élégant formalisme de la théorie quantique est mis en place autour des années 19251930 par Paul Dirac (19021984), Niels Bohr (18851962) et Werner Heisenberg (19011976). Il fixe le cadre à l'intérieur duquel les phénomènes lumineux sont aujourd'hui étudiés.
Références
- Blay (M.), La conceptualisation newtonienne des phénomènes de la couleur, Paris, Vrin 1983.
- Crombie (A.C)., Robert Grosseteste and the Origins of Experimental Science, 1100-1700, Oxford, Clarendon Press, 1971 (première éd., 1953).
- Hall (A.R.), All was light. An Introduction to Newton's Optick, Oxford, Clarendon Press, 1993.
- Maitte (B.), La lumière, Paris, Le Seuil, 1981.
- Ronchi (V.), Histoire de la lumière, Paris A. Colin, 1956.
- Rashed (R.), Géométrie et Dioptrique au Xe siècle. Ibn Sahl, Al-Qûhi et Ibn Al-Haytham, Paris, Les Belles lettres, 1993.
- Sabra (A.I.), Theories of Light from Descartes to Newton, Cambridge University Press, 1981 (première éd. 1967).
- Simon (G.), Le regard, l'être et l'apparence dans l'optique de l'Antiquité, Paris, Le Seuil, 1988.

 

VIDEO            CANAL  U              LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

L'ÉNERGIE OSMOTIQUE

 

Paris, 27 février 2013


Energie renouvelable : des nanotubes pour tirer le meilleur de l'énergie osmotique


La différence de salinité entre l'eau douce et l'eau de mer est l'une des voies explorées pour obtenir de l'énergie renouvelable. Néanmoins, les faibles rendements des techniques actuelles constituent un frein à son utilisation. Ce verrou pourrait être en train d'être levé. Une équipe menée par des physiciens de l'Institut Lumière Matière (CNRS / Université Claude Bernard Lyon 1), en collaboration avec l'Institut Néel (CNRS), a découvert une nouvelle piste pour récupérer cette énergie : l'écoulement osmotique à travers des nanotubes de Bore-Azote permet de générer un courant électrique géant avec une efficacité plus de 1 000 fois supérieure à celle atteinte jusqu'ici. Pour parvenir à ce résultat, les chercheurs ont développé un dispositif expérimental très original permettant, pour la première fois, d'étudier le transport osmotique des fluides à travers un nanotube unique. Leurs résultats sont publiés le 28 février dans la revue Nature.
Les phénomènes osmotiques se manifestent lorsque l'on met en contact un réservoir d'eau salée avec un réservoir d'eau douce par l'intermédiaire de membranes semi-perméables adaptées. Il est alors possible de produire de l'électricité à partir des gradients salins. Ceci, de deux façons différentes : d'un côté, la différence de pression osmotique entre les deux réservoirs peut faire tourner une turbine ; de l'autre, l'utilisation de membranes qui ne laissent passer que les ions permet de produire un courant électrique.

Concentrée au niveau des embouchures des fleuves, la capacité théorique de l'énergie osmotique au niveau mondial serait d'au moins 1 Térawatt, soit l'équivalent de 1000 réacteurs nucléaires. Cependant, les technologies permettant de récupérer cette énergie présentent d'assez faibles performances, de l'ordre de 3 Watts par mètre carré de membrane. Les physiciens de l'Institut Lumière Matière (CNRS / Université Claude Bernard Lyon 1), en collaboration avec l'Institut Néel (CNRS), pourraient être parvenus à lever ce verrou.

Leur but premier était d'étudier la dynamique de fluides confinés dans des espaces de taille nanométrique tels que l'intérieur de nanotubes. En s'inspirant de la biologie et des recherches sur les canaux cellulaires, ils sont parvenus, pour la première fois, à mesurer l'écoulement osmotique traversant un nanotube unique. Leur dispositif expérimental était composé d'une membrane imperméable et isolante électriquement. Cette membrane était percée d'un trou unique par lequel les chercheurs ont fait passer, à l'aide de la pointe d'un microscope à effet tunnel, un nanotube de Bore-Azote de quelques dizaines de nanomètres de diamètre extérieur. Deux électrodes plongées dans le liquide de part et d'autre du nanotube leur ont permis de mesurer le courant électrique traversant la membrane.

En séparant un réservoir d'eau salée et un réservoir d'eau douce avec cette membrane, ils ont généré un courant électrique géant à travers le nanotube. Celui-ci est dû à l'importante charge négative que présentent les nanotubes de Bore-Azote à leur surface, charge qui attire les cations contenus dans l'eau salée. L'intensité du courant traversant le nanotube de Bore-Azote est de l'ordre du nanoampère, soit plus de mille fois celui produit par les autres méthodes cherchant à récupérer l'énergie osmotique.

Les nanotubes de Bore-Azote permettent donc de réaliser une conversion extrêmement efficace de l'énergie contenue dans les gradients salins en énergie électrique directement utilisable. En extrapolant ces résultats à une plus grande échelle, une membrane de 1 mètre carré de nanotubes de Bore-Azote aurait une capacité d'environ 4 kW et serait capable de générer jusqu'à 30 MegaWatts.heure 1 par an. Ces performances sont trois ordres de grandeur au-dessus de celles des prototypes de centrales osmotiques en service aujourd'hui. Les chercheurs veulent à présent étudier la fabrication de membranes composées de nanotubes de Bore-Azote, et tester les performances de nanotubes de composition différente.

 

DOCUMENT              CNRS                  LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google