ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

VOLCANISME ET ÉVOLUTION DE LA VIE SUR TERRE

 

Texte de la 433e de l'Université de tous les savoirs donnée le 12 juillet 2002

Vincent Courtillot,« Volcanisme et évolution de la vie sur terre »

Depuis quelques dizaines d'années, l'impact climatique que peuvent causer les éruptions volcaniques n'est plus mis en doute. Chaque fois que se produisent des éruptions riches en soufre, le climat en est légèrement modifié, la couleur du coucher de soleil change pendant plusieurs mois, la température de la basse atmosphère baisse, de quelques dixièmes de degrés, ce qui est cependant suffisant pour avoir des conséquences sur le climat. Ainsi, l'éruption du Laki en Islande, en 1783, au cours de laquelle 10 km3 de lave ont été crachés, a modifié le climat de tout l'hémisphère nord pendant plus d'une année. Les poussières volcaniques et les gaz ont causé des brouillards s'étendant, durant l'été et l'automne 1783, sur la plus grande partie de l'Europe et sur les régions adjacentes de l'Afrique et de l'Asie, causant des récoltes particulièrement maigres. Certains disent que les famines qui s'ensuivirent dans toute l'Europe et plus particulièrement en France sont un élément à considérer dans l'origine de la Révolution française en 1789.
La question est de savoir si le volcanisme que l'on peut observer à une échelle historique, récente, a toujours existé, et à la même échelle. Les informations qu'amassent, entre autres, les géologues et géophysiciens, permettent d'affirmer qu'il y a eu au cours des temps géologiques des éruptions beaucoup plus violentes. L'évolution de la Vie sur Terre en a t'elle été affectée ?

Si l'on représente (Figure 1) le nombre d'espèces différentes présentes sur terre (estimé à partir des fossiles retrouvés par les paléontologues) en fonction du temps qui s'est écoulé depuis 550 millions d'années, au début de l'ère primaire, la courbe obtenue représente l'évolution de la biodiversité au cours du temps. Au cours du Cambrien, le nombre d'espèces explose, avant de s'effondrer de manière subite il y a 250 millions d'années. La courbe remonte, mais un nouvel événement fait chuter la courbe de manière brutale il y a 65 millions d'années, à la limite entre l'ère secondaire et l'ère tertiaire. C'est à ce moment que disparaissent, entre autres, les dinosaures. Après cette catastrophe, la vie repart de nouveau : elle est aujourd'hui plus diverse qu'elle ne l'a jamais été depuis 600 millions d'années.
La pente de cette courbe (Figure 1) représente le nombre d'espèces qui disparaissent par unité de temps, c'est-à-dire l'intensité des extinctions. Sans cesse, des espèces s'éteignent et d'autres apparaissent, ce qui fait partie du processus normal de l'évolution. Il y a cependant quelques moments particuliers durant lesquels les taux d'extinctions sont énormes : ce sont les grandes extinctions en masse. La plus sévère a eu lieu il y 250 millions d'années, elle définit la limite entre l'ère primaire et l'ère secondaire : 95 % des espèces et peut être 99 % des organismes vivants ont disparu en guère plus d'un million d'année. Ces extinctions sont bien recensées, de la plus ancienne il y a 440 millions d'années (à la limite Ordovicien/Silurien), à la plus récente, il y a 65 millions d'années (à la limite Crétacé/Tertiaire). Les causes de ces événements cataclysmiques sont toujours débattues, et plus particulièrement la raison de l'extinction à la limite Crétacé/Tertiaire. Deux grandes familles d'hypothèses sont avancées depuis quelques dizaines d'années. La théorie la plus connue est celle selon laquelle les dinosaures auraient succombé à la collision entre la terre et un astéroïde. La deuxième hypothèse attribue l'extinction des espèces aux gaz, aux aérosols, et aux poussières libérés (Figure 3) lors d'éruptions volcaniques gigantesques. Quelle hypothèse paraît aujourd'hui la plus valable ? Elle ne peut être validée que si elle peut donner lieu à des « prévisions », puis à des vérifications par l'observation sur le terrain ou l'expérimentation.

Vers la fin des années 1970, un géologue américain, Walter Alvarez, ramasse à Gubbio, en Italie, des échantillons de calcaire, et remarque une couche noirâtre d'argile, dans laquelle il ne retrouve aucune trace de vie. Il se rend compte que les espèces de foraminifères (des protozoaires marins) présentes sous cette couche sont typiques de l'ère secondaire, et ne sont pas retrouvées au dessus de la strate d'argile, au delà de laquelle on trouve d'autres espèces. La grande majorité des espèces n'a donc pas survécu à la période à laquelle s'est déposée la couche d'argile. Il est apparu par la suite que cette couche d'argile, retrouvée un peu partout sur la Terre, contenait en proportion importante de l'iridium, un métal extrêmement rare dans la croûte terrestre, mais présent dans les météorites. L'analyse des roches au microscope a montré des grains de quartz présentant des rayures noires caractéristiques d'une onde de choc telle qu'aurait pu en provoquer l'impact d'une météorite. La rareté de l'occurrence de ces observations a conduit Walter Alvarez à la conclusion qu'une météorite avait frappé la terre il y a 65 millions d'années. La trace du cratère de cet impact a été retrouvée à l'aide de l'étude des anomalies de pesanteur sous 3 km de sédiments dans la péninsule du Yucatan au Mexique. Son diamètre est d'environ 180 km. A titre de comparaison, le plus grand cratère observable à l'heure actuelle sur Terre, le Meteor Crater, ne fait qu'un peu plus de 1 Km de diamètre : il a été creusé il y a 20 000 ans par une météorite d'une centaine de mètres de diamètre. Le cratère du Mexique a été daté à 65 millions d'années. C'est sur la base de ces observations indiscutables que les scientifiques considèrent comme démontrée l'hypothèse de la météorite. Cependant, le lien entre l'impact et l'extinction en masse n'est pas complètement établi, et ce pour plusieurs raisons.

Il est tout d'abord difficile d'enregistrer une extinction, et de déchiffrer les informations que les roches fournissent. Les sédiments, qui sont une des sources d'information, ne se déposent pas en continuité et peuvent même être absents en certains endroits (lacunes). Les phénomènes de bio-turbation (dus à des animaux fouisseurs) ou l'érosion peuvent perturber ou détruire le signal. Enfin, la fossilisation d'un être vivant est un événement extrêmement rare, donc il n'est jamais sûr que le dernier fossile trouvé soit contemporain de l'extinction de l'espèce. La lecture d'un enregistrement fossile est donc un travail difficile. Une extinction graduelle peut ainsi, si l'on n'y prend garde, passer pour une extinction massive, et inversement, du fait des caprices de l'enregistrement sédimentaire.
Des enregistrements de l'extinction Crétacé/Tertiaire observés au Texas et en Tunisie tendent à prouver que des extinctions se produisaient déjà quelques dizaines ou centaines de milliers d'années avant l'impact de la météorite. Comment expliquer cela ?
Une solution a pu être trouvée en allant chercher en Inde. On y trouve les traps du Deccan (Figure 2), une immense extension de plus de 500 000 km2 de laves basaltiques réparties en couches qui s'étendent sur des dizaines, voire de centaines de kilomètres, chacune faisant des dizaines, voire une centaine de mètres d'épaisseur. Il s'agit donc de coulées volcaniques dont le volume est étonnant : pour certaines plus de 1 000 km3, ce qui est à comparer avec les 10 km3 de la coulée de lave de 1783 en Islande, la plus grosse de mémoire humaine. Connaissant l'impact de cette éruption islandaise, il parait raisonnable d'imaginer que la séquence des énormes coulées du Deccan ait eu des conséquences climatiques significatives. La question qui se pose est de savoir de quand datent ces basaltes. Cette datation a représenté une grande partie du travail de plusieurs équipes entre 1985 et 1990. Les résultats obtenus à l'aide de trois méthodes de datation (l'une utilisant des éléments radioactifs (méthode sSur de la méthode au carbone 14), l'une basée sur la mémoire magnétique des roches et la troisième sur l'observation des fossiles) ont permis d'établir que ces traps ont 65 millions d'années.
On a pu ainsi évaluer la durée d'éruption des traps du Deccan. En premier lieu, cinq âges obtenus sur mille mètres d'épaisseur de lave sont séparés par un écart plus faible que la précision de la méthode de mesure, ce qui permet d'affirmer que ces laves se sont mises en place en très peu de temps. Par ailleurs, il est établi que le champ magnétique de la terre ne cesse de s'inverser. Pourtant, les mesures de la polarité magnétique de laves qui s'étendent sur deux mille mètres d'épaisseur montrent que le champ magnétique terrestre ne s'est inversé que deux fois pendant les éruptions. Cette observation démontre que le phénomène de mise en place des coulées a été très rapide. Enfin, la découverte de fossiles à la base des traps, mais aussi entre les différentes coulées (ce qui signifie que des lacs se sont mis en place entre des événements volcaniques, permettant ainsi la fossilisation des animaux) montre que le volcanisme a débuté à la toute fin de l'ère Secondaire. Les trois types d'observation amènent à dire que les traps du Deccan se sont mis en place il y a 65 millions d'années, en moins d'un million d'années et peut être même en une phase paroxysmale de quelques centaines de milliers d'années seulement, pendant la période qui a connu l'extinction Crétacé/Tertiaire. La limite de la précision, de l'ordre de quelques centaines de milliers d'années, ne peut être dépassée, car elle est imposée par la stratigraphie, la paléontologie et la géochronologie.
Cependant, la découverte de la couche d'iridium (témoin d'un phénomène qui avait lieu de l'autre coté du globe !) dans une couche sédimentaire entre deux coulées de laves dans la province du Kutch a permis d'établir avec certitude que le volcanisme était déjà en cours lorsque la météorite s'est écrasée sur Terre. Cet impact ne peut donc pas avoir déclenché les événements volcaniques.
Les traps du Deccan sont un événement volcanique d'une intensité exceptionnelle, comme il ne s'en est produit aucun depuis une trentaine de millions d'années sur Terre. Il paraît raisonnable d'imaginer que ces éruptions ont pu avoir un impact climatique. La recherche progresse beaucoup dans le domaine et permet d'avoir une idée de la manière dont ces éruptions peuvent altérer la biosphère et donc perturber la végétation et les chaînes trophiques (de nourriture) des animaux inférieurs vers les animaux supérieurs. L'émission de gaz sulfureux conduit à un refroidissement rapide de l'atmosphère, celle de gaz carbonique à un réchauffement global du à l'effet de serre ; de manière paradoxale, le gaz carbonique est ensuite absorbé par l'altération des laves et une période de refroidissement s'ensuit. L'érosion est accélérée par les pluies acides, des périodes de glaciation, de stagnation des océans et donc d'appauvrissement en oxygène (anoxie, dont la trace stratigraphique peut être retrouvée) se succèdent. Tous ces phénomènes peuvent conduire à des extinctions en masse aussi bien dans le domaine continental, terrestre, que dans le domaine marin.

Si la théorie d'une relation causale entre événements volcaniques massifs et extinctions en masse est juste, elle doit pouvoir être validée par d'autres exemples. Puisque ce sont les extinctions qui ont permis aux géologues de tracer les frontières entre les âges de l'échelle géologique, cela signifierait alors que ces limites marqueraient les âges des grandes catastrophes volcaniques. L'échelle de la vie sur terre deviendrait du même coup l'échelle de la dynamique du globe.
Les traps existants ont été répertoriés (Figure 4). Une dizaine seulement sont détectables à la surface de la terre : les traps du Deccan en Inde, les traps d'Ethiopie, ceux de la province du Karoo en Afrique du Sud, du Parana au Brésil, et ceux présents en Sibérie et au Groenland. De manière générale, ce qui a été découvert pour les traps du Deccan est aussi valable pour les autres.
A l'époque de la Pangée, il y a deux cents millions d'années, une immense province volcanique s'est formée, qui va précéder la naissance de l'océan Atlantique. Les laves étant très anciennes, elles ont été érodées, mais les fissures qui ont servi à alimenter ces coulées (les dykes, qui ont quelques dizaines ou centaines de kilomètres) ont été retrouvées en Amérique du Nord, en Afrique, au Nord-est de l Amérique du Sud et en Europe. Ces dykes datent de 200 millions d'années, ce qui correspond à la limite Trias/Jurassique et coïncide avec la deuxième plus vieille extinction en masse (Figure 1). La durée totale d'émission des laves a pu être évaluée de manière plus précise que pour les traps du Deccan : elle aurait duré moins de 600 000 ans.
Il y a 250 millions d'années se produit l'une des plus grandes éruptions volcaniques de tous les temps à l'endroit où se trouve aujourd'hui la Sibérie. Ces traps de Sibérie sont très riches en minéraux, associés à la mise en place du volcanisme. Partout où leur âge a pu être mesuré, ces roches ont été datées à 250 millions d'années, ce qui correspond bien à la plus grande extinction de tous les temps, la limite entre l'ère Primaire et l'ère Secondaire. Cependant, si l'on regarde en détail la diversité biologique en fonction du temps autour de cette limite, il apparaît déjà une extinction sérieuse à la fin du Guadaloupien : l'extinction répertoriée à la fin de l'ère Primaire semble donc être en réalité composée de deux extinctions massives, séparées d'environ 8 millions d'années. Il a d'ailleurs été noté que le niveau des mers avait brusquement baissé deux fois à ces deux moments. Si la théorie des traps a une valeur générale, un trap datant de 258 millions d'années devrait avoir existé. Cette « prédiction » a été proposée il y a huit ans, alors qu'aucun trap de cet âge n'était connu. Depuis, des traps ont été découverts à la frontière entre la Chine du Sud et le Vietnam. Ces traps n'avaient pas été détectés auparavant car depuis leur formation l'Inde est entrée en collision avec l'Asie, et les traps ont été en grande partie détruits. La méthode de datation à l'uranium et au plomb sur silicates de zirconium a permis d'établir leur âge à 259 millions d'années (à trois millions d'années près). Il existe donc quatre traps dont l'âge corrèle avec les quatre dernières grandes extinctions en masse.
D'autres échantillonnages sur les traps de Sibérie sont en cours, plus à l'ouest en collaboration des confrères russes. Des formations géologiques très particulières s'y trouvent, les pipes de kimberlite, qui sont des cheminées volcaniques produisant des laves très particulières auxquelles sont associées des diamants. Des mesures de paléomagnétisme (la direction magnétique fossilisée dans ces laves) ont permis de montrer qu'il y avait là deux groupes de roches d'âges différents. L'un correspond parfaitement aux traps de Sibérie, tant sur le plan de la direction magnétique que sur le plan de l'âge (250 millions d'années), et ces laves correspondent donc aux premières phases volcaniques de ces traps. L'autre groupe de roche a une direction magnétique très différente, et l'âge en serait de 350 à 370 millions d'années. Or, il y a 360 millions d'années se produisait une autre grande extinction en masse, à la limite Frasnien/Famménien, dont personne ne connaît encore la cause. Nous avons donc peut être trouvé sous les traps de Sibérie les derniers restes d'un trap qui se serait produit 110 millions d'années plus tôt, et qui serait la cause de cette extinction.
Les traps les plus jeunes, ceux d'Ethiopie, ont été datés à 30 millions d'années, avec une durée de mise en place inférieure à 800 000 ans. Les cendres de ces éruptions ont été retrouvées à des milliers de kilomètres de là dans l'océan Indien, lorsqu'on y a fait des forages. Les traps d'Ethiopie correspondent à un épisode majeur d'avancée des glaces, à une chute du niveau des mers, à un épisode d'aridité et à une baisse de la diversité des mammifères, donc à un phénomène bio-climatique significatif.

Dans l'état actuel des connaissances, la corrélation entre impacts de météorites et extinctions massives n'a été vérifiée, après vingt ans de recherche, qu'une seule fois, dans le cas du cratère du Mexique. Les âges des autres cratères qui ont été trouvés ne corrèlent en effet pas bien avec les limites entre les âges géologiques. En revanche, la correspondance entre l'âge d'un trap et celui d'une extinction massive (Figure 5) a été vérifiée dans huit cas, sans compter celui qui est en cours d'expertise.
La réalité de l'impact d'une météorite il y a 65 millions d'années n'est pas à remettre en cause. Cependant les arguments développés plus haut tendent à prouver que ce phénomène s'est produit dans un monde déjà stressé depuis plus de 200 000 ans par des éruptions volcaniques d'une ampleur colossale. Il existe huit autres exemples permettant d'affirmer que ce genre de phénomène peut provoquer une extinction massive. Il paraît donc raisonnable d'attribuer aux éruptions les extinctions survenues avant l'impact météoritique. Ce dernier a peut être causé d'un coup les deux tiers des extinctions, mais cela n'aurait pas pu advenir si la biosphère n'avait déjà été fragilisée.
En conclusion, si la corrélation entre les traps enfouis en Sibérie et la limite Frasnien/Famménien est validée, le modèle proposant de voir dans les grands événements volcaniques la cause des extinctions massives serait vérifié depuis 400 millions d'années. Un modèle qui pourrait bien servir aux climatologues qui tentent de prédire les effets des modifications que l'Homme impose à l'atmosphère.

 

VIDEO             CANAL  U               LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

LES VOLCANS

 

LES VOLCANS


Les volcans sont responsables de la formation de notre atmosphère et des continents, qui sont en quelque sorte l'écume magmatique de la Terre. Ils sont aussi un précieux outil d'échantillonnage de l'intérieur de la Terre, et leurs laves portent des informations précieuses sur la composition des roches profondes et inaccessibles dont elles sont issues. Il faut enfin voir chaque volcan comme le résultat superficiel des mouvements internes de grande ampleur qui affectent notre planète dans son ensemble. La volcanologie moderne s'attaque aux mécanismes des éruptions et repose sur des mesures systématiques des paramètres éruptifs. Les volcans sont de fantastiques systèmes physiques aux comportements originaux et variés, mais on peut les réduire à quelques lois simples. Comme dans d'autres domaines des Sciences de l'Univers, une éruption volcanique met en jeu nombre de phénomènes physiques distincts qui opèrent à des échelles très différentes. Les titanesques explosions volcaniques qui propulsent des milliards de tonnes de cendres dans la haute atmosphère trouvent leur origine dans de minuscules bulles de gaz. Le volcanologue doit comprendre les changements que subit un magma lorsqu'il franchit plusieurs kilomètres pour arriver jusqu'à la surface. Il ne peut observer ces changements et doit les reconstituer à l'aide des lois de la physique. Il ne peut disséquer un volcan et connaît mal sa structure interne car les techniques géophysiques d'auscultation sont limitées et grossières. Pour vérifier ses prévisions et calculs, il dispose de peu d'informations : quelques échantillons figés dans leur état final et quelques mesures globales comme la durée de l'éruption et la masse totale éjectée. C'est ce travail d'équilibriste qui rend son travail passionnant et qui nécessite un aller et retour constant entre son laboratoire et le terrain.

 

VIDEO           CANAL  U            LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

LES VOLCANS AUX ANTILLES

 

Paris, 27 février 2012


Des forages aux Antilles pour mieux évaluer les risques liés à l'instabilité des volcans


Cap sur les Petites Antilles, du 3 mars au 17 avril 2012, pour l'équipe internationale co-dirigée par Anne Le Friant, chercheur CNRS à l'Institut de physique du Globe de Paris (CNRS / Université Paris Diderot / IPGP) et par Ozamu Ishizuka du Geological Survey of Japan. Cette campagne océanographique vise à mieux évaluer les risques associés aux instabilités de flanc de volcan, susceptibles de provoquer des tsunamis. Pour remplir cet objectif, les scientifiques réaliseront une dizaine de forages qui permettront de retracer l'histoire éruptive des zones les plus actives des Antilles durant le dernier million d'années. C'est la première fois que des carottages seront effectués dans des fonds marins recouverts par des dépôts d'avalanches de débris volcaniques.
Petites Antilles : un arc volcanique aux risques multiples
L'arc des Petites Antilles (1), directement lié à l'affrontement des plaques Caraïbes et Amérique du Nord, est constitué de nombreux édifices volcaniques dont douze, au moins, ont été actifs lors des 10 000 dernières années. La Montagne Pelée, en Martinique, et la Soufrière, en Guadeloupe font partie de ces volcans. Si, tout le long de l'arc, les compositions magmatiques et les styles éruptifs sont différents, les éruptions sont la plupart du temps explosives. De grands glissements (aussi appelés « déstabilisations » (2)) peuvent se produire sur les flancs des volcans, générant un risque de raz de marée lorsque les avalanches de débris arrivent en mer. Les scientifiques ont montré précédemment qu'au moins 52 instabilités de flanc s'étaient produites sur les volcans des Petites Antilles, dont au moins 15 durant les 12 000 dernières années. Autour de Montserrat, pas moins de 75 % des produits émis par le volcan actuellement en éruption se sont épanchés en mer.  

Forer au large pour retracer l'histoire éruptive et comprendre les risques
Au cours de cette nouvelle campagne IODP (3), prévue du 3 mars au 17 avril 2012, l'équipe prévoit de réaliser dix forages (de 130 à 500 mètres), choisis stratégiquement autour de trois sites représentatifs des principaux processus volcaniques de l'arc antillais : Montserrat, la Martinique et la Dominique. Grâce aux analyses des carottes marines prélevées en 2002 au large des Petites Antilles, les scientifiques ont mis en évidence un nombre d'éruptions plus important que celui déduit des seules études effectuées sur la terre ferme (où les dépôts des éruptions sont parfois masqués ou érodés). En plus des sédiments et des niveaux de cendres volcaniques qui permettront d'accéder à l'histoire des volcans, les forages prélèveront, pour la première fois, les dépôts d'avalanches de débris, dans une zone où la fréquence des déstabilisations semble plus importante qu'ailleurs.

Cette campagne a pour objectif de reconstituer le plus finement possible l'histoire éruptive des volcans des Petites Antilles en documentant les cycles de construction et de destruction volcanique. Il s'agit notamment de mieux définir la nature du volcanisme durant les premiers stades de construction des édifices volcaniques (composition chimique, taux de production, explosivité, rôle de la construction par rapport aux processus de destruction) ainsi que les processus caractérisant l'activité éruptive et sa migration le long de l'arc antillais. Le but est également de mieux comprendre les processus à l'œuvre dans les avalanches de débris et la dispersion des sédiments en milieu océanique. Ces informations permettront de mieux évaluer les risques liés à l'activité volcanique dans cette région.

 

DOCUMENT           CNRS              LIEN

 
 
 
 

VOLCANS EXPLOSIFS

 

Volcans explosifs - laboratoires indonésiens (VELI)


La compréhension du fonctionnement des volcans explosifs à dômes est un challenge majeur pour la volcanologie. La communauté volcanologique française sera tôt ou tard confrontée à une situation de crise majeure aux Antilles (Soufrière de Guadeloupe et/ou Montagne Pelée). Or, la Montagne Pelée est actuellement en sommeil et la Soufrière de Guadeloupe en activité hydrothermale de basse température et leur étude ne permet pas d’aborder certains aspects typiques de l’activité catastrophique de ces volcans à dômes (gaz de haute température, déclenchement et mise en place des coulées pyroclastiques ou lahars, déformations actives, dynamique des dômes, etc. De plus, l’instrumentation pour la surveillance de ce type d’activité doit pouvoir être testée et validée en contexte éruptif pour une meilleure adéquation, et d’évidence les volcans français antillais ne constituent qu’en partie un terrain sur lequel peut s’effectuer une telle validation. Le site instrumenté VELI (Volcans Explosifs Laboratoire Indonésien) a été créé pour pallier ces insuffisances. Trois de ces volcans (Merapi, Semeru, Kelut) situés à Java, volcans à dôme considérés comme des volcans analogues des volcans français, constituent des sites idéaux pour la mise en place de réseaux de surveillance, le développement et la validation d’instrumentation et la préparation d’équipes françaises aux situations de crise sur ce type de volcans.
Des activités de ce type sont déjà menées sur ces sites dans le cadre d’une coopération internationale (France-Indonésie, financement MAE) depuis 22 ans. Cette coopération très active et productive démontre la faisabilité de ce projet d’observation et fournit une base minimale en terme d’organisation pour le service. Ce projet est un projet structurant pour la volcanologie française. Il a pour ambition de développer des synergies inter-laboratoires, et de fournir un soutien aux équipes des observatoires en cas de besoin.
Responsable : Jean-Philippe Métaxian
Site web:
http://veli.obs.ujf-grenoble.fr/

 

DOCUMENT             CNRS            LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google