|
|
|
|
 |
|
Découverte de nouveaux marqueurs génétiques à l’origine d'une maladie des artères essentiellement féminine |
|
|
|
|
|
Découverte de nouveaux marqueurs génétiques à l’origine d'une maladie des artères essentiellement féminine
COMMUNIQUÉ | 21 OCT. 2021 - 14H00 | PAR INSERM (SALLE DE PRESSE)
PHYSIOPATHOLOGIE, MÉTABOLISME, NUTRITION
La dysplasie fibromusculaire artérielle est une anomalie de la paroi de certaines artères entraînant une augmentation du risque cardiovasculaire chez les personnes qui en sont atteintes. Selon de récentes estimations, 3% de la population générale pourrait en être affectée et au moins 80% des personnes atteintes de cette maladie sont des femmes. Alors que les connaissances scientifiques sur cette maladie étaient jusqu’ici limitées, des chercheurs et chercheuses de l’Inserm et enseignants-chercheurs d’Université de Paris, en collaboration avec l’Université du Michigan, sont parvenus à décrire la composante génétique de la maladie, premier par vers l’identification de nouvelles cibles thérapeutiques. Chez les personnes atteintes, ils ont identifié des variations génétiques dans quatre gènes. Ces résultats font l’objet d’une publication dans la revue Nature communications.
Certaines formes d’accidents vasculaires cérébraux, d’hypertension et d’infarctus du myocarde surviennent plus fréquemment chez des femmes en apparente bonne santé, âgées de moins de 60 ans, dont le poids et le bilan lipidique sont normaux. Ces patientes peuvent être ensuite diagnostiquées d’une dysplasie fibromusculaire artérielle, maladie qui se traduit par la déformation, voire le rétrécissement des artères[1]. Celles-ci ne sont alors plus en mesure d’irriguer correctement des organes vitaux comme les reins, le cœur et le cerveau.
Actuellement, la seule option thérapeutique proposée aux patients atteints de cette maladie est la dilatation mécanique des déformations des artères par une technique médico-chirurgicale appelée angioplastie percutanée, pourtant inefficace dans de nombreux cas. Connaître les bases génétiques d’une telle maladie est donc indispensable pour envisager la mise en place de traitements spécifiques.
Dans une nouvelle étude[2], des chercheurs et chercheuses de l’Inserm et enseignants-chercheurs d’Université de Paris ont passé au peigne fin les données génétiques de 1 500 personnes atteintes de dysplasie fibromusculaire artérielle, les comparant à celles de plus de 7 000 témoins issus de la population générale.
Ils ont ainsi pu identifier des variations génétiques dans quatre gènes associés à la dysplasie fibromusculaire artérielle. Celles-ci seraient à l’origine d’une altération de la fonction des cellules qui composent la musculature de l’artère (les cellules musculaires lisses) et impacteraient le travail de régulation de la distribution sanguine et de maintien de la pression artérielle des artères musculaires, comme l’artère rénale et l’artère carotide.
Les résultats de cette étude indiquent que la dysplasie fibromusculaire artérielle serait génétiquement déterminée par un très grand nombre de variations génétiques dont l’impact individuel serait faible. Cependant, additionnées, leur impact serait important (représentant environ 40% des facteurs génétiques impliqués dans la maladie) et provoquerait la survenue de maladies graves comme l’accident vasculaire cérébral et l’hypertension.
Enfin, grâce à un travail de recherche incluant la comparaison génétique avec d’autres maladies cardiovasculaires, les chercheurs ont découvert qu’une proportion importante des causes génétiques de la dysplasie fibromusculaire artérielle sont identiques à celles retrouvées dans l’hypertension artérielle, la céphalée migraineuse et l’anévrysme intracrânien, des maladies où les femmes sont souvent surreprésentées également.
Comprendre les mécanismes biologiques impliqués dans cette maladie pourrait ainsi permettre de comprendre les mécanismes biologiques communs à ces maladies cardiovasculaires et neuro-vasculaires.
« Nos résultats apportent de nouvelles connaissances biologiques sur cette maladie singulière, ainsi que sur les gènes et les pistes à explorer, afin de parvenir à identifier des cibles thérapeutiques pour la dysplasie fibromusculaire artérielle. Cette étude apporte également un argument supplémentaire sur l’utilité d’étudier les formes féminines de la maladie cardiovasculaire car cela permet d’aborder des aspects différents de ceux déjà établi par l’étude de maladies cardiovasculaires classiques où les hommes sont surreprésentés », explique Nabila Bouatia-Naji, directrice de recherche à l’Inserm, et chef d’équipe au PARCC (Paris – Centre de Recherche Cardiovasculaire) qui a dirigé cette étude collaborative internationale.
[1] Les artères sont très serrées par endroits (sténoses) et gonflées ailleurs (anévrysmes).
[2] Menée grâce à un financement Européen (ERC).
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
Une protéine anti-oxydante pour lutter contre les altérations du microbiote intestinal et contrôler l’inflammation |
|
|
|
|
|
Une protéine anti-oxydante pour lutter contre les altérations du microbiote intestinal et contrôler l’inflammation
| 06 DÉC. 2017 - 11H39 | PAR INSERM (SALLE DE PRESSE)
CANCER
Des équipes de l’hôpital Paul-Brousse AP-HP, de l’Inserm et de l’Université Paris-Sud viennent de mettre en évidence un mécanisme de modulation du microbiote intestinal impliquant une molécule aux pouvoirs antioxydant et anti-inflammatoire appelée REG3A. Celle-ci protégerait la barrière intestinale et les bactéries les plus sensibles à l’oxygène formant le microbiote améliorant ainsi la survie et la croissance de « bonnes » bactéries. La transplantation de microbiote fécal dans des souris modèles de colite sévère ou l’administration d’une protéine recombinante REG3A à des souris sauvages révèle une franche diminution de leur susceptibilité à la maladie. Ces résultats sont publiés dans la revue Gastroenterology et constituent une nouvelle approche de manipulation du microbiote intestinal à but thérapeutique, de restauration de la symbiose hôte-microbiote et d’atténuation de l’inflammation intestinale.
Un des facteurs clés de déséquilibres dans la composition du microbiote ou « dysbiose » est le stress oxydatif intestinal. Combiné aux réponses immunitaires, il est capable d’amplifier la production de radicaux libres, l’activation de cellules inflammatoires (macrophages), les déséquilibres de composition du microbiote en faveur de bactéries aérotolérantes et les lésions de la barrière intestinale.
Le Dr Jamila Faivre du service d’Onco-Hématologie de l’hôpital Paul-Brousse, AP-HP et son équipe de l’unité 1193 « Physiopathogenèse et Traitement des Maladies du Foie » du Centre Hépatobiliaire (Inserm/Université Paris-Sud) étudient le stress oxydatif comme cible thérapeutique pour prévenir ou traiter les maladies et/ou les désordres liés à une dysbiose.
Dans cette étude, les chercheurs montrent qu’une protéine recombinante humaine appelée REG3A est capable de modifier le microbiote intestinal en diminuant les niveaux de radicaux libres. Ce mécanisme de régulation est basé sur l’activité anti-oxydante de cette molécule.
REG3A protège les bactéries commensales intestinales du stress oxydatif en piégeant les radicaux libres et en améliorant la survie et la croissance des « bonnes » bactéries de l’intestin connues pour être très sensibles à l’oxygène.
En accord avec les données obtenues dans des cultures bactériennes in vitro, la molécule délivrée dans la lumière digestive de souris transgéniques modifie la composition du microbiote intestinal avec surreprésentation de symbionts Gram positif tels que les Clostridiales et améliore la fonction barrière et la résistance des souris dans deux modèles de colite expérimentale sévère.
En allant plus loin, les chercheurs ont observé que la transplantation de microbiote fécal provenant de souris transgéniques qui expriment fortement REG3A protège les souris sauvages conventionnelles ainsi que des souris germ-free colonisées de la colite sévère induite. De plus, l’administration intrarectale de protéine recombinante humaine REG3A à des souris sauvages diminue significativement leur susceptibilité à la colite induite.
Ces résultats suggèrent qu’une thérapie biologique basée sur l’administration de protéine recombinante REG3A est une approche originale de (re)modelage du microbiote intestinal, d’atténuation de l’inflammation intestinale voire de prévention du cancer colorectal.
Par rapport aux stratégies actuelles l’originalité de cette approche est double : utiliser une protéine humaine produite de manière endogène dans l’intestin et renforcer la proportion de bactéries intestinales à potentialité anti-inflammatoire en augmentant la concentration intra-luminale de REG3A pour préserver la symbiose hôte-microbiote et ainsi mieux combattre l’inflammation intestinale, voire extra-intestinale.
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
Un cerveau virtuel pour décrypter l’épilepsie |
|
|
|
|
|
Un cerveau virtuel pour décrypter l’épilepsie
COMMUNIQUÉ | 29 JUIL. 2016 - 10H55 | PAR INSERM (SALLE DE PRESSE)
NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE | TECHNOLOGIE POUR LA SANTE
Des chercheurs du CNRS, de l’Inserm, d’Aix-Marseille Université et de l’AP-HM viennent de créer pour la première fois un cerveau virtuel permettant de reconstituer le cerveau d’une personne atteinte d’épilepsie. Ce travail permet de mieux comprendre le fonctionnement de la maladie mais aussi d’aider à préparer des gestes chirurgicaux par exemple. Ces résultats viennent d’être publiés en ligne sur le site de la revue Neuroimage.
Un pour cent de la population mondiale souffre d’épilepsie. La maladie affecte les individus différemment, d’où l’importance d’un diagnostic et d’un traitement individualisé. Or actuellement les moyens de comprendre les mécanismes de cette pathologie sont peu nombreux et relèvent surtout de l’interprétation visuelle d’un IRM et d’un électroencephalogramme. Cela s’avère d’autant plus difficile que 50% des patients ne présentent pas d’anomalie visible à l’IRM et que la cause de leur épilepsie reste donc inconnue.
Des chercheurs ont réussi pour la première fois à élaborer un cerveau virtuel personnalisé, en concevant un « modèle » de base et en y additionnant les informations individuelles du patient, comme la façon, propre à chaque individu, dont sont organisées les régions de son cerveau et l’interconnexion des aires entre elles. Le résultat permet de tester sur celui-ci des modèles mathématiques engendrant une activité cérébrale. Les scientifiques ont ainsi pu reproduire le lieu d’initiation des crises d’épilepsie et leur mode de propagation. Ce cerveau a donc une véritable valeur de prédiction du fonctionnement des crises pour chaque patient, ce qui offre un diagnostic beaucoup plus précis.
Par ailleurs, 30% des patients épileptiques ne répondent pas aux médicaments. Leur seul espoir reste alors la chirurgie. Celle-ci est efficace si le chirurgien a de bonnes indications sur les zones à opérer.
Le cerveau virtuel permet aux chirurgiens d’avoir une « plate-forme » virtuelle. Ils peuvent ainsi repérer les zones à opérer, en évitant pour ce faire d’avoir à procéder à un geste invasif, et surtout de préparer l’opération en testant différents gestes possibles, en voyant lequel est le plus efficace et quelles sont ses conséquences, chose évidemment impossible à faire sur le patient.
A terme, le but de l’équipe est d’offrir une médecine personnalisée du cerveau, en proposant, grâce à la virtualisation, des solutions thérapeutiques individualisées et spécifiques pour chaque patient. Les chercheurs travaillent actuellement sur des essais cliniques, afin de démontrer la valeur prédictive de leur découverte. Cette technologie est par ailleurs à l’essai sur d’autres pathologies affectant le cerveau, comme l’AVC, Alzheimer, les maladies neuro dégénératives, ou la sclérose en plaques.
Ces travaux impliquent des chercheurs de l’Institut de neurosciences des systèmes (Inserm/AMU), du Centre de résonance magnétique biologique et médicale (CNRS/AMU/AP-HM), du département épileptologie et du département neurophysiologie clinique de l’AP-HM, et l’Epilepsy Center de Cleveland. Ils ont été réalisés au sein de la Fédération hospitalo-universitaire Epinext (www.epinext.org).
Le Patient Epileptique Virtuel : les régions du cerveau et leurs connexions sont reconstruites par ordinateur. Les simulations numériques génèrent un signal électrique similaire à celui généré par le cerveau pendant les crises. Ces simulations permettent de tester informatiquement de nouvelles stratégies thérapeutiques.
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
Une nouvelle molécule gélifiante pour la culture de neurones en 3D |
|
|
|
|
|
Une nouvelle molécule gélifiante pour la culture de neurones en 3D
COMMUNIQUÉ | 14 MAI 2018 - 23H00 | PAR INSERM (SALLE DE PRESSE)
TECHNOLOGIE POUR LA SANTE
Une équipe pluridisciplinaire de chercheurs du CNRS, de l’Inserm et de l’Université Toulouse III – Paul Sabatier a mis au point un hydrogel permettant de cultiver des cellules souches neurales, les faire se développer et se différencier. Ce biomatériau pourrait apporter de nouvelles perspectives pour l’élaboration de modèles cellulaires du tissu cérébral in vitro ou la reconstruction tissulaire in vivo. Ces travaux sont publiés dans la revue ACS Applied Materials & Interfaces le 14 mai 2018.
Bien que la culture de cellules soit aujourd’hui bien maîtrisée sur une surface en deux dimensions, cela n’est pas représentatif de l’environnement réel des cellules dans un organisme vivant. En effet, dans le tissu cérébral, les cellules sont organisées et interagissent en trois dimensions dans une structure souple. Ainsi, l’objectif principal pour les chercheurs était d’imiter au mieux ce tissu. Ils ont donc mis au point un hydrogel répondant à des critères de perméabilité, de rigidité et de biocompatibilité adaptés et sur lequel ils ont cultivé des cellules souches neurales humaines 1 .
La N-heptyl-galactonamide est une molécule nouvellement synthétisée par ces scientifiques et fait partie d’une famille de gélifiants habituellement connue pour donner des gels instables. Biocompatible, de structure très simple et rapide à produire, cette molécule présente de nombreux avantages. En travaillant sur les paramètres de formation du gel, les chercheurs des laboratoires Interactions moléculaires et réactivité chimique et photochimique (CNRS/Université Toulouse III-Paul Sabatier), Toulouse Neuro Imaging Center (Inserm/Université Toulouse III-Paul Sabatier) et du Laboratoire d’analyse et d’architecture des systèmes du CNRS ont obtenu un hydrogel stable, très peu dense et de très faible rigidité. Il permet ainsi aux cellules souches neurales d’y pénétrer et de s’y développer en trois dimensions.
L’hydrogel présente également un maillage composé de différents types de fibres, les unes droites et rigides ; les autres courbes et flexibles. Cette diversité permet aux neurones de développer un réseau d’interconnexions à courtes et longues distances telles qu’elles sont observées dans le tissu cérébral.
Ce nouveau biomatériau pourrait donc permettre de développer des modèles de tissu cérébral en trois dimensions dont le fonctionnement se rapprocherait des conditions in vivo. À terme, il pourrait être utilisé pour évaluer l’effet d’un médicament ou permettre la transplantation de cellules avec leur matrice dans le cadre de réparations de lésions cérébrales.
1 Les cellules souches neurales sont issues de biopsies de patients (CHU de Toulouse – Pôle Neurosciences). Ces cellules sont capables de se différencier en neurones et en cellules gliales, les principaux types cellulaires du tissu cérébral.
DOCUMENT inserm LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 ] Précédente - Suivante |
|
|
|
|
|
|