ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

LA MÈMOIRE

 

 

 

 

 

 

 

mémoire

Consulter aussi dans le dictionnaire : mémoire
Activité biologique et psychique qui permet d'emmagasiner, de conserver et de restituer des informations.

PSYCHOLOGIE ET MÉDECINE
1. LES MÉCANISMES DE LA MÉMOIRE

La mémoire est un processus complexe qui comporte trois phases : apprentissage, stockage de l'information puis restitution (évocation et reconnaissance). Ces phénomènes ne sont pas sous la dépendance d'une région précise et spécialisée du cerveau ; ils se déroulent à la fois au niveau des centres nerveux polyvalents (l'hippocampe, le corps mamillaire et l'hypothalamus) et des fibres nerveuses qui relient ces 3 centres.


Classiquement, on distingue la mémoire à court terme, qui ne dure pas plus de quelques minutes, de la mémoire à long terme. En outre, la psychanalyse décrit une mémoire inconsciente influant sur l'activité psychique (→ psychisme). Réciproquement, l'état affectif du sujet exerce sur sa mémoire une action stimulante ou inhibitrice.
L'étude de la mémoire, dont les premiers pas, effectués à l'aide de techniques expérimentales, remontent au xixe s. (H. Ebbinghaus), a été profondément renouvelée – si l'on met à part les apports de la psychanalyse – par l'apparition et l'intégration, au milieu des années 1950, de la notion d'information.

2. LES DIFFÉRENTS TYPES DE MÉMOIRE
Le cognitivisme, courant fort de la psychologie moderne, reprend l'idée, exprimée par W. James, qu'il existe plusieurs types de mémoire, correspondant à plusieurs types de stockage de l'information, et construit un modèle fondé sur la distinction entre information stockée et information sur l'information stockée : une mémoire à court terme serait définie par le passage des stimulus dans une « pile » aux capacités limitées ; éliminés en cas de non réactivation, ces stimulus viendraient, dans le cas contraire, prendre place dans un autre répertoire, la mémoire à long terme, représentant la totalité des connaissances acquises.
Les neurologues admettent aujourd’hui l’existence de cinq types de mémoire.

COURT TERME

• La mémoire de travail, seule forme de mémoire à court terme, permet de retenir brièvement des informations afin de poursuive une conversation ou une lecture sans en perdre le fil, de composer un numéro de téléphone après consultation d’un répertoire, de respecter les panneaux de signalisation routière, d’effectuer tous le actes qui ne demandent que quelques minutes de souvenir.

2.2. TROIS MÉMOIRES À LONG TERME
Il existe trois formes de mémoire de représentations à long terme.

• La mémoire perceptive nous permet d’identifier immédiatement des perceptions sensorielles déjà rencontrées : image, bruit ou son, odeur, goût, sensation de toucher.
→ sens.

• La mémoire sémantique permet de donner un sens et un contexte à tous les mots que nous entendons ou que nous lisons, à toutes les connaissances que nous avons accumulées.
→ sémantique.

• La mémoire épisodique est notre autobiographie : l’ensemble des événements de notre vie, de leur contexte dans le temps et dans l’espace, des émotions liées à ces souvenirs (mémoire émotive définie dans d’autres approches).
→ émotivité.

2.3. UNE MÉMOIRE « AUTOMATIQUE »
La dernière forme de mémoire met en jeu des automatismes.

• La mémoire procédurale stocke les apprentissages complexes, des habiletés et des savoir-faire et de les reproduire sans passer par l’étape de la conscience.

3. L'ENCODAGE DANS LA MÉMOIRE

Cette caractérisation de l'architecture de la mémoire rend nécessaire une analyse des modalités précises de la mise en mémoire de l'information à des fins de restitution possible (encodage), c'est-à-dire la manière dont sont retenues et exploitées les données fournies par les divers appareils sensoriels. Cela explique l'intérêt pour les traits constitutifs, principalement et respectivement, de la mémoire visuelle (→ vision) et de la mémoire auditive (→ audition).

Elle invite également à dégager des règles auxquelles obéit l'organisation des souvenirs stockés, règles dont l'existence seule permet à la mémoire de jouer son rôle de support de nos connaissances et de guide de l'action. Il a été montré que certains traits d'un objet (oiseau, fleur) apparaissent plus représentatifs de la classe à laquelle il appartient que d'autres (un « moineau » est plus facilement rangé dans la catégorie oiseau qu'une « autruche »). Il y a donc des représentations catégorielles qui sont à la base de l'encodage dans la mémoire. C'est le phénomène de typicalité. Celui-ci est étroitement lié au contexte social et culturel de chaque sujet, mais, comme tel, doit vraisemblablement apparaître dans toutes les cultures humaines.

Ce phénomène se retrouve dans une analyse de la mémoire appliquée à l'analyse du langage : la compréhension du langage peut s'analyser comme la perception de séquences de « mots » syntaxiquement bien rangés, eux-mêmes immédiatement perçus comme autant de catégories renvoyant à des signifiants structurés. Cela veut bien dire que chaque chose nouvelle perçue l'est à la fois dans sa nouveauté et dans l'ordre où elle prend un sens. Il y a donc en jeu une mémoire implicite et une mémoire explicite : les données du texte, comme les stimulus de la perception, activent les différentes structures cognitives stockées par le sujet.

4. LA MÉMOIRE ET LE CERVEAU
Si dans la perspective cognitiviste, marquée par les modèles informatiques, l'étude de la mémoire peut être menée sans exploration directe du cerveau, il n'en convient pas moins de tenir compte des acquis de la psychophysiologie. Celle-ci a recherché les éventuelles localisations du stockage dans le cerveau ; puis ce modèle « localisateur » s'est affiné et s'est associé à l'analyse des lésions cérébrales.
Toutefois le développement de l’IRM fonctionnelle a permis d’étudier directement sur le cerveau vivant et sain l’activation des zones cérébrales impliquées dans les différents types de mémoire.
Ainsi la mémoire de travail sollicite en priorité la zone préfrontale (→ lobe frontal) également impliquée dans les actes cognitifs qui nécessitent de la concentration et de l’attention.

La mémoire perceptive sollicite les zones correspondant aux cinq sens : cortex visuel du lobe occipital pour la mémoire visuelle (→ vision), cortex auditif du lobe temporal pour la mémoire auditive (→ audition), zones spécifiques du goût, de l’odorat ou du toucher.
La mémoire sémantique sollicite de larges zones de tout le cortex, notamment des zones préfrontale et temporale.
La mémoire épisodique sollicite l’hippocampe, également impliqué dans l’acquisition, le filtrage et la mémorisation des souvenirs, ainsi que de vastes zones du lobe frontal et du lobe occipital.

Enfin la mémoire procédurale stimule les zones de contrôle de la motricité : cortex, cervelet et ganglions de la base du cerveau.

5. LES EXAMENS DE LA MÉMOIRE
Les examens de la mémoire, longs et assez délicats, nécessitent une attention soutenue de la part du sujet. Pour explorer sa mémoire à court terme, on lui fait répéter après quelques minutes des séries très courtes de trois mots. Pour étudier sa mémoire à long terme, on lui pose des questions sur sa vie, celle de son entourage et sur l'actualité.

6. LES TROUBLES DE LA MÉMOIRE
• Les troubles de la mémoire par défaut sont les trous de mémoire et les amnésies. Des trous de mémoire « isolés » peuvent être dus à une fatigue, à une dépression latente ou à la prise prolongée de certains médicaments (somnifères, tranquillisants).
Les amnésies sont brèves ou prolongées, portent sur la mémoire à court terme ou à long terme, concernent des faits survenus après (amnésie antérograde) ou avant (amnésie rétrograde) le début des troubles : ainsi, un traumatisme crânien provoque parfois une amnésie rétrograde (le malade a oublié ce qui s'est passé pendant les minutes, les heures ou les jours qui ont précédé l'accident), voire une amnésie antérograde de durée variable.
Certains troubles métaboliques (hypoglycémie) et l'épilepsie peuvent entraîner une amnésie transitoire. Le trouble de mémoire léger (MCI, pour Mild Cognitive Impairment en anglais) est un déficit de mémoire pouvant rester isolé ou évoluer vers une maladie d'Alzheimer (15 % environ évoluent chaque année dans ce sens).

Les principales affections à l'origine d'amnésies prolongées sont les maladies dégénératives (démences, dont la maladie d'Alzheimer), les accidents vasculaires cérébraux, les infections (encéphalites virales), les carences (encéphalopathie de Gayet-Wernicke, syndrome de Korsakoff) et les maladies psychiatriques (dépression, névrose) ; il arrive lors de certaines de ces maladies (confusion, manie, démence, syndrome de Korsakoff) que les sujets émaillent leurs discours de récits imaginaires et de fausses reconnaissances, destinés à combler leurs pertes de mémoire.
• Les autres troubles de la mémoire sont l'ecmnésie (résurgence massive du passé), qui s'observe notamment dans les états passionnels hystériques et délirants et dans l'épilepsie, et l'hypermnésie (hypertrophie de la mémoire), qui n'est pas rare dans la manie ou dans l'arriération mentale et ne doit pas être confondue avec celle de certains sujets prodiges, généralement liée à des aptitudes hors du commun dans un domaine précis (calcul, musique).
Voir aussi : amnésie, démence, ictus amnésique, syndrome de Korsakoff.

 

   DOCUMENT   larousse.fr    LIEN

 
 
 
 

Consommer une alimentation riche en caroténoïdes diminue les risques de développer une DMLA

 

 

 

 

 

 

 

Consommer une alimentation riche en caroténoïdes diminue les risques de développer une DMLA

COMMUNIQUÉ | 24 JUIN 2021 - 9H24 | PAR INSERM (SALLE DE PRESSE)

SANTÉ PUBLIQUE

Un régime alimentaire de type méditerranéen – riche en fruits, légumes, légumineuses, céréales complètes, huile d’olive et poissons gras – permettrait de prévenir le développement de la DMLA, maladie dégénérative qui est la première cause de handicap visuel chez les plus de 50 ans. Une nouvelle étude publiée par des chercheurs de l’Inserm et de l’université de Bordeaux au Centre de recherche Bordeaux Population Health met en évidence de façon inédite une association entre les caroténoïdes circulants – des pigments végétaux protecteurs pour la rétine – et une réduction du risque de développer une forme avancée de DMLA. Ces travaux, fondés sur le suivi de 609 personnes sur huit ans, constituent la première étude longitudinale à identifier cette association et font l’objet d’une publication dans la revue Nutrients.

La dégénérescence maculaire liée à l’âge (DMLA) est la première cause de perte de la vision dans les pays industrialisés. Il s’agit d’une maladie dégénérative qui affecte la partie centrale de la rétine, cruciale pour les tâches quotidiennes (lire, conduire, reconnaître les visages…). À un stade avancé, la maladie prend deux formes : la forme néovasculaire, ou humide, que l’on soigne par injection d’anti-VEGF[1] directement dans l’œil, et la forme atrophique, ou sèche, pour laquelle il n’existe pas encore de traitements.
Néanmoins, à défaut de soigner complètement la maladie, il est possible de la prévenir ou de ralentir sa progression. On connaît déjà bien les facteurs de risque de la DMLA, qui sont liés à l’âge et au terrain génétique. Cependant, il s’agit de facteurs non modifiables, sur lesquels nous n’avons pas les moyens d’agir.

Depuis vingt ans, les chercheurs s’intéressent au lien entre nutrition et DMLA. Nous savons aujourd’hui que de nombreux aliments permettent de ralentir la dégénérescence : acide gras (oméga 3), antioxydants (vitamines C, zinc…). Ils protègent en effet la macula, la zone de l’œil affectée par la DMLA qui se situe au centre de la rétine.
À travers une étude prospective réalisée à partir du suivi sur 8 ans de la cohorte ALIENOR, l’objectif des chercheurs était d’étudier le lien entre la présence de lutéine et de zéaxanthine dans le plasma et l’apparition de la DMLA.
La lutéine et la zéaxanthine font partie de la grande famille des caroténoïdes. On les retrouve notamment dans les fruits jaune orangé comme les agrumes ou les tomates, ainsi que dans les légumes à feuilles vertes, tels que les épinards, les choux et les blettes. Ce sont des pigments qui jouent un rôle très spécifique pour l’œil puisqu’ils sont présents en grande concentration dans la macula. Ils ne sont pas synthétisés par notre corps, c’est pourquoi nous devons les absorber à travers notre alimentation.
Là où les précédentes études se fondaient uniquement sur les informations renseignées par les participants concernant leur régime alimentaire, l’équipe de la chercheuse Inserm Bénédicte Merle a analysé des prélèvements sanguins et a ainsi pu démontrer une association objective entre des niveaux circulants de lutéine et de zéaxanthine et une diminution du risque de la DMLA.

Ces travaux révèlent qu’une concentration plus importante de caroténoïdes dans le plasma, en particulier de lutéine et de zéaxanthine, réduit de 37 % le risque de développer une forme avancée de DMLA.

Ce résultat est similaire pour les formes atrophique et néovasculaire de la maladie. Toutefois, au-delà de la lutéine et la zéaxanthine, aucun autre caroténoïde n’a été associé à une telle diminution des risques.
La lutéine et la zéaxanthine apportent en effet une vraie protection à la rétine : d’une part elles absorbent la lumière bleue, qui est connue pour endommager la rétine sur le long terme. D’autre part, elles jouent le rôle d’antioxydant afin de protéger la rétine du stress oxydatif[1], qui est justement un facteur de la DMLA.

L’étude ALIENOR est une étude en population qui vise à évaluer le lien entre les maladies de l’œil et les facteurs nutritionnels. Dans le cadre de ces travaux, 609 participants âgés de 73 ans en moyenne ont été recrutés entre 2006 et 2008. Les participants ont réalisé dès leur intégration un dosage sanguin pour mesurer leur concentration plasmatique en lutéine et en zéaxanthine. Ils ont ensuite effectué une consultation ophtalmologique afin de diagnostiquer la DMLA. Parmi eux, 54 ont développé une DMLA sur la période de suivi, qui a duré 8 ans.

Que faut-il manger pour prévenir l’apparition ou ralentir la progression de la DMLA ?
Pour avoir des concentrations plasmatiques suffisantes en lutéine et en zéaxanthine dans l’organisme, il convient de privilégier les fruits et les légumes jaune orangé (tomates, carottes, agrumes), ainsi que les légumes à feuilles vertes (chou, épinards). « Si on veut aller un peu plus loin, l’alimentation la plus bénéfique pour prévenir la DMLA serait un régime de type méditerranéen, riche en fruits et légumes et qui apporte assez d’oméga 3 grâce aux poissons gras », souligne Bénédicte Merle, auteure de l’étude.
Au-delà des recommandations nutritionnelles, la découverte du rôle de ces caroténoïdes ouvre des pistes pour repérer des groupes de population plus à risque de développer la DMLA en fonction de leur régime alimentaire. Cette étude offre donc des stratégies de prévention mais aussi d’identification des facteurs de risque qui seront utiles pour l’avenir de la recherche.
 
[1] Le stress oxydatif est l’ensemble des agressions causées par des molécules dérivant de l’oxygène sur les cellules de notre corps. Les plus connues de ces substances néfastes sont les radicaux libres.
[1] Les anti-VEGF sont des nouvelles thérapeutiques qui agissent sur la membrane même des cellules et sont souvent utilisés pour empêcher la survie  des  tumeurs.

 

 DOCUMENT       inserm      LIEN

 
 
 
 

Les bases neurobiologiques de l’anxiété

 

 

 

 

 

 

 

Les bases neurobiologiques de l’anxiété

COMMUNIQUÉ | 19 JUIN 2012 - 15H09 | PAR INSERM (SALLE DE PRESSE)

EUROPE | NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE

Une journée scientifique intitulée « Neurobiological basis of Anxiety disorders » réunit lundi 18 juin à Paris les scientifiques des 6 organismes partenaires de DEVANX [1], projet européen coordonné par l’Inserm, démarré en 2008. L’occasion de faire un point sur l’état des connaissances acquises sur les bases neurobiologiques de l’anxiété.
La connaissance des circuits cérébraux et les molécules-clés impliqués dans les manifestations de l’anxiété a fait de grand progrès depuis quelques années. L’utilisation de modèles animaux a beaucoup contribué à cette compréhension. Chez la souris, il est ainsi possible d’observer les changements comportementaux  qui interviennent dans les situations de conflit émotionnel, par exemple comment l’animal va choisir entre l’exploration d’un espace neuf (curiosité) et le repli sur soi (peur). L’étude de l’animal dans une situation de peur apprise a aussi été bien décrite : comment l’animal va apprendre à associer un environnement neutre avec un danger potentiel.
La sérotonine et le GABA sont les 2 principales molécules « messagères » entre les neurones (« neurotransmetteurs »)  qui sont impliquées dans les états anxieux. Ce sont de fait les cibles communes des médicaments « anxiolytiques ».
Mais le rôle exact de ces molécules, leurs interactions avec l’environnement sont encore à préciser. L’apport de la génétique et les nouvelles données concernant la plasticité du cerveau doivent s’intégrer à la compréhension chaque jour plus fine des mécanismes en jeu. Patricia Gaspar et Laurence Lanfumey, directrices de recherche Inserm – coordinatrices du projet DEVANX – et leurs collègues, ont cherché à aborder l’étude des bases neurobiologique de l’anxiété sous divers angles.

1.   LES ASPECTS PHARMACOLOGIQUES
Les récepteurs GABAb, présents sur les neurones, sont des cibles de nouvelles molécules dont le mode d’action est complètement différent des anxiolytiques classiques (benzodiazépines) qui, quant à eux, agissent sur les récepteurs GABAa. La connaissance de la structure et de la fonction des récepteurs GABAb, ainsi que leurs interactions avec le système sérotoninergique permet de proposer des nouvelles cibles thérapeutiques.
En particulier l’équipe de Benny Bettler, membre du consortium DEVANX localisé en Suisse, a montré que les récepteurs GABAb sont des hétérodimères (assemblage de 2 sous unités différentes de récepteurs) qui possèdent des protéines partenaires pouvant modifier leurs propriétés de couplage. Les propriétés pharmacologiques des récepteurs GABAb varient en fonction de l’organisation des protéines partenaires. D’un point de vue thérapeutique, la modulation positive de ces récepteurs représente une possible stratégie pour le développement de nouveaux anxiolytiques. John Cryan, partenaire du consortium DEVANX en Irlande, a montré que le blocage des récepteurs GABAb induit en effet la diminution d’un comportement dépressif. Dans ce cadre, l’équipe de Laurence Lanfumey à Paris a étudié le lien entre les récepteurs GABAb et le système sérotoninergique.


Ces sous unités sont des récepteurs à sept domaines transmembranaires couplées aux protéines G via la sous unité GABAB2 .Les sous unités GABAB1a et GABAB1b diffèrent entre elles par la présence de deux domaines terminaux (sushi-domain) sur la sous unitéGABAB1a.

2.   LE RÔLE DE LA SÉROTONINE
Chez les personnes souffrant de dépression, d’attaques de panique, d’anxiété, ou de phobies, un traitement permettant d’augmenter le niveau de sérotonine réduit ces pathologies.
Cependant, peu de données étaient disponibles sur la cause initiale de ce manque de sérotonine, déclencheur de ces troubles. C’est pourquoi différents modèles animaux sont nécessaires aux chercheurs pour découvrir et analyser les différentes situations d’un cerveau « pauvre » en sérotonine.
La sérotonine est impliquée dans de nombreux rôles physiologiques : rythmes veille-sommeil, impulsivité, appétit, douleur, comportement sexuel, et anxiété. Son action est médiée par près d’une quinzaine de  sous-types de récepteurs différents.
Le système sérotoninergique est en fait multiple : il est présent dans le système nerveux central (dans les  noyaux du raphé dans le cerveau) et périphérique (dans les cellules entérochromaffines du tube digestif).
La « spécialisation » de neurones en « neurones à sérotonine » est contrôlée par différents facteurs moléculaires, selon leur localisation, et ne se fait pas aux mêmes moments du développement.

Une des études réalisées par les spécialistes de la génétique au sein du projet DEVANX a consisté à cibler de manière conditionnelle la production de sérotonine à un temps donné, dans une localisation choisie. L’équipe de Dusan Bartsch, partenaire DEVANX localisé à Mannheim, a par exemple produit des modèles de souris génétiquement modifiées qui permettent de diminuer la sérotonine à différents temps de la vie, en créant des modèles dits inductibles (l’extinction d’un gène peut être induite par l’administration d’une drogue). L’équipe de Patricia Gaspar à Paris a caractérisé des mutations dans lesquelles seule une partie des neurones sérotoninergiques est atteinte (mutation d’un facteur de transcription pet1). Chez ces souris, l’équipe a observé que l’anxiété spontanée était diminuée, mais leur conditionnement à la peur accru. Ainsi, le défaut de sérotonine centrale pourrait contribuer à associer plus facilement une réaction de panique avec des situations neutres.

3.   LES AUTRES CIRCUITS EN JEU : CIRCUITS DE LA PEUR
Les connexions avec des travaux sur la peur et les derniers enseignements d’un point de vue neurocomportemental permettent de croiser les approches.
Il apparaît de plus en plus que ce sont des circuits neuronaux normaux de réaction à l’environnement qui sont détournés ou amplifiés de manière pathologique dans l’anxiété. Dès lors, il est très important de comprendre et d’analyser le fonctionnement de ces circuits chez les animaux « en situation ». A terme, l’objectif consiste à trouver les moyens de « déconditionner » certains circuits cérébraux anormalement ou excessivement activés.

Les nouvelles approches de la physiologie sur l’animal vigile et de pharmacogénétique ont permis des avancées dans ce domaine. Par exemple le laboratoire d’Agnés Gruart à Séville, une des équipes partenaires de DEVANX, a enregistré différents neurones des circuits hippocampiques dans des situations d’apprentissage de la peur et ont observé l’effet de la modification du message médié par le GABAb et la sérotonine. Le laboratoire de Cornelius Gross à l’EMBL de Rome, a montré que l’on pouvait utiliser des récepteurs sérotoninergiques (5-HT1A) exprimés dans différentes régions cérébrales pour abolir transitoirement l’activité des circuits neuronaux très spécifiques. Ceci lui a permis de préciser les circuits hippocampiques et amygdaliens impliqués dans le phénomène de généralisation de la peur.
 
 La recherche dans le domaine de l’anxiété, comme dans de nombreux domaines des Neurosciences, met à profit des approches intégrées, qui nécessitent des expertises multiples. Les études moléculaires doivent à présent impérativement s’intégrer dans le contexte de l’animal entier qui exprime des comportements les plus proches possibles de situations physiologiques, tout en étant rigoureusement contrôlées sur le plan expérimental. Les outils génétiques donnent une puissance inégalée pour rechercher la fonction d’une molécule déterminée ou d’un assemblage moléculaire dans un circuit donné et dans une fenêtre temporelle précise. Ce type d’approche est appelé à se développer dans les années à venir avec des outils qui permettront d’activer ou de rendre silencieux certains circuits neuronaux sélectionnés.
La résolution, pas à pas, de ces processus élémentaires imbriqués, devrait permettre d‘expliquer les mécanismes sous-tendant l’anxiété pathologique.


[1] DEVANX: “Serotonin and GABA-B receptors in anxiety : From developmental risk factors to treatment”, projet soutenu par la Commission Européenne, démarré en 2008, dont les partenaires sont l’Inserm (coordinateur), University College Cork, Irlande, European Molecular Biology Laboratory, Italie/Allemagne, Central Institute of Mental Health, Mannheim, Allemagne, Universitaet Basel, Suisse, Universidad Pablo de Olavide, Espagne

 

  DOCUMENT        inserm        LIEN

 
 
 
 

Quand le cœur dépasse ses limites mardi 17 juillet 2018

 

 

 

 

 

 

 

Quand le cœur dépasse ses limites


mardi 17 juillet 2018

Après une course d’endurance extrême, le cœur peut présenter une dysfonction qui perdure et dont les mécanismes cellulaires demeurent inconnus. Les équipes d’Olivier Cazorla au laboratoire de Physiologie et médecine expérimentale du cœur et des muscles et de Cyril Reboul au Laboratoire de Pharm-écologie cardiovasculaire, identifient les mécanismes qui affectent la contractilité cardiaque en fonction de la durée de l’exercice. Cette étude, publiée le 01 Mai 2018 dans la revue International Journal of Cardiology, décrit des interactions entre les signalisations redox et adrénergiques à l’origine de désordres fonctionnels de la machinerie contractile cardiaque pouvant contribuer à différentes pathologies cardiaques.

La popularité des courses d’extrême endurance comme les trails, triathlons et marathons augmente mondialement depuis 30 ans, tout comme l’âge moyen des participants. Réaliser un exercice intense de type marathon est devenu un challenge personnel pour beaucoup d’individus, même pour « le sportif du dimanche ». Cette pratique s’est même durcie avec l’apparition des « ultra » où les efforts intenses dépassent les 10 heures d’affilées. Pour autant, cette pratique sportive ne fait l’objet d’aucune recommandation médicale particulière.

Pourtant, au cours des 10 dernières années, il a été montré que ce type d’épreuves physiques extrêmes était à l’origine de troubles transitoires de la fonction cardiaque, aujourd’hui connu sous le nom de fatigue cardiaque. Bien que ce phénomène soit rapporté dans un grand nombre d’études cliniques sur le terrain ou en laboratoire, à ce jour les mécanismes cellulaires et moléculaires sous-jacents n’ont jamais été clairement identifiés.
Les chercheurs ont exploré les mécanismes sous-tendant cette fatigue cardiaque sur un modèle de rat coureur en se concentrant sur le rôle de la signalisation médiée par le système adrénergique et la signalisation médiée par le stress oxydant, toutes deux très largement sollicitées au cours de l’exercice physique. Différents systèmes expérimentaux complémentaires ont été mis en œuvre in vivo, ex vivo (cœur isolé) et in vitro (cellule isolée), couplés à une approche pharmacologique.

La fonction cardiaque explorée in vivo par échocardiographie est plutôt améliorée par une course modérée d’une demi-heure. Si la course se prolonge plusieurs heures des dysfonctions des capacités de remplissage du cœur (fonction diastolique) sans atteinte majeure de la fonction de contraction sont observées comme chez l’Homme. Cette dysfonction persiste sur cœur isolé, suggérant des altérations de l’organe indépendantes de facteurs circulants. L’étude du couplage excitation-contraction à l’échelle cellulaire montre que les protéines de la machinerie contractile (sarcomère) sont préférentiellement affectées.

Il est aujourd’hui connu que la réponse du cœur à l’exercice est associée à la fois à un stress adrénergique et à un stress oxydant. A l’étage des protéines contractiles des myocytes cardiaques, un exercice modéré engendre à la fois l’activation d’une signalisation adrénergique, caractérisée par la phosphorylation de certaines protéines régulatrices cibles et une signalisation dite redox qui conduit à la s-glutathionylation d’une protéine clé dans la régulation de la fonction sarcomérique, la Myosin Binding protein-C (MyBP-C). Lorsque l’exercice est intense et prolongé, la s-glutathionylation de la MyBP-C empêche la signalisation dépendante du stress adrénergique d’impacter ses cibles au niveau de la machinerie contractile cellulaire. Ces modifications au niveau du sarcomère sont directement corrélées aux modifications contractiles de la cellule cardiaque et du cœur entier.
Les chercheurs montrent que l’on peut prévenir ces altérations fonctionnelles du cœur avec une supplémentation des animaux avant la course avec un antioxydant à large spectre, la N-acetylcystéine. Cela permet d’augmenter, avant l’épreuve physique intense, les stocks de glutathion réduit, de normaliser le niveau de s-glutathionylation de la MyBP-C. Cette stratégie permet finalement de préserver la voie de signalisation adrénergique sur les myofilaments et de normaliser la fonction cardiaque.
Ces résultats mettent en évidence des mécanismes cellulaires et moléculaires à l’origine de la fatigue cardiaque observée chez l’Homme après une épreuve physique de longue durée.

Figure : Durant un exercice physique, différentes voies de signalisation sont activées pour augmenter la force de contraction du cœur. Dans la cellule musculaire cardiaque (myocyte) qui compose le cœur, la machinerie contractile est une cible préférentielle. En fonction de l’intensité/durée de l’exercice, le stress oxydant généré induit la S-glutathionylation de la cMyBP-C (annotée en rouge -GS). Cette modification interfère avec les phosphorylations dépendantes du système adrénergique (annotées en bleu -P). Durant un exercice « modéré », il y a plus de phosphorylations dans le sarcomère ce qui est bénéfique pour la fonction cardiaque in vivo (partie gauche). Un exercice prolongé épuisant augmente la S-glutathionylation de la cMyBP-C et diminue les phosphorylations du sarcomère ce qui induit des troubles transitoires de la relaxation et donc des capacités de remplissage du cœur entre chaque contraction.
© Olivier Cazorla et Cyril Reboul

Références :
*         Stress-induced protein S-glutathionylation and phosphorylation crosstalk in cardiac sarcomeric proteins - impact on heart function. Chakouri N, Reboul C, Boulghobra D, Kleindienst A, Nottin S, Gayrard S, Roubille F, Matecki S, Lacampagne A, Cazorla O. 
International Journal of Cardiology. 258 (2018) 207–216. DOI: 10.1016/j.ijcard.2017.12.004
*
Contacts :
*         Olivier Cazorla Physiologie et Médecine Expérimentale du cœur et des muscles – PHYMEDEXP –
CNRS UMR 9214 - Inserm U1046 - Université de Montpellier
CHU Arnaud de Villeneuve
34295 Montpellier cedex 05 Tél. 04 67 41 52 44
*
*         Cyril Reboul 
Laboratoire de Pharm-écologie CardioVasculaire –LaPEC
UPRES 4278 – Université d’Avignon
84000 Avignon Tel. 04 90 16 29 46

 

    DOCUMENT         CNRS         LIEN  
 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google