ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

Des macaques retrouvent le contrôle d’un membre paralysé

 

 

 

 

 

 

 

Des macaques retrouvent le contrôle d’un membre paralysé

COMMUNIQUÉ | 09 NOV. 2016 - 19H05 | PAR INSERM (SALLE DE PRESSE)

NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE


Des primates non-humains ont retrouvé le contrôle d’un membre inférieur paralysé suite à une lésion de la moelle épinière. Cette avancée a été rendue possible grâce à une interface cerveau-moelle épinière (dite « neuroprothèse »). Ce système agit comme un pont sans fil entre le cerveau et les centres de la marche situés dans la moelle épinière, court-circuitant ainsi la lésion. Cette neuroprothèse a été développée par un consortium international mené par l’École Polytechnique de Lausanne (EPFL) au sein duquel l’Institut des maladies neurodégénératives (CNRS/Université de Bordeaux) sous la direction d’Erwan Bezard, directeur de recherche Inserm a mené la validation expérimentale chez l’animal. Les résultats sont publiés le 9 novembre 2016 dans la revue Nature. Un essai clinique a d’ores et déjà été initié à l’hôpital universitaire de Lausanne afin de tester les effets thérapeutiques de cette neuroprothèse chez des patients souffrant de lésions de la moelle épinière.
 
Le 23 juin 2015, un premier singe macaque porteur d’une lésion de la moelle épinière a pu retrouver le contrôle d’un membre inférieur paralysé, et donc remarcher, grâce à une neuroprothèse appelée « interface cerveau-machine » court-circuitant la lésion. Ce système est capable de restaurer la communication entre le cerveau (lieu de genèse des actions volontaires) et la région de la moelle épinière produisant les mouvements des membres inférieurs.

Comment ?
Cette interface cerveau-machine enregistre l’activité cérébrale liée à l’intention de marche, la décode, et transmet cette information à la moelle épinière sous la lésion. Cette transmission est assurée par des électrodes qui stimulent les réseaux nerveux activant les muscles des jambes pendant la locomotion naturelle. Ainsi, seuls les mouvements souhaités par le singe sont produits.
Cette neuroprothèse a été conçue à l’EPFL (Lausanne, Suisse) et techniquement développée par un groupe international composé de Medtronic (USA), l’Université Brown (USA) et le Fraunhofer ICT-IMM (Mayence, Allemagne). Elle a ensuite été testée chez le primate en collaboration avec l’Inserm, le CNRS, l’Université de Bordeaux et le Centre Hospitalier Universitaire de Lausanne (Suisse).
“C’est la première fois qu’une neuroprothèse restaure la marche chez le primate » déclare Grégoire Courtine, professeur à l’EPFL, qui conduit le consortium.
“Les deux singes ont été capables de remarcher immédiatement après la mise en fonction de la neuroprothèse. Aucun entrainement n’a été nécessaire » indique Erwan Bézard, directeur de recherches Inserm et directeur de l’Institut des maladies neurodégénératives (CNRS/Université de Bordeaux), qui a supervisé les expériences sur le primate menées dans son centre. “ Il faut toutefois conserver à l’esprit les nombreux challenges qu’il reste à relever. Même si les essais cliniques débutent, cela prendra quelques années avant que de telles approches soient disponibles en clinique pour l’Homme ».
 
L’interface cerveau-moelle épinière court-circuite la lésion, en temps réel et sans fil
Dans le système nerveux intact, le signal électrique produisant la marche est généré au niveau des neurones cérébraux du cortex moteur. Ces signaux sont aussitôt envoyés à la région lombaire de la moelle épinière. A ce niveau, des réseaux complexes de neurones prennent le relais et contrôlent l’activation des muscles des jambes responsables de la marche. Des faisceaux de fibres nerveuses provenant du cerveau fournissent l’information requise à ces neurones quant à l’intention (ou non) de marcher, leur permettant alors de s’activer pour la réalisation du comportement. Une stimulation électrique délivrée précisément est donc capable de moduler ces réseaux et de produite l’activation désirée des muscles des jambes.

L’interface cerveau-moelle épinière court-circuite la lésion, en temps réel et sans fil. La neuroprothèse décode l’activité du cortex moteur pour « comprendre » le désir de marche ou de quelque mouvement que ce soit et transmet cette information au stimulateur. Ce dernier active les électrodes situées sous la lésion à la surface de la moelle épinière pour permettre l’activation contrôlée des muscles des jambes, en fonction du réel souhait de l’animal.

Le Pr. Jocelyne Bloch, neurochirurgienne, du centre hospitalier universitaire de Lausanne (CHUV) conduit maintenant l’essai clinique qui permettra d’évaluer, chez l’Homme, le potentiel thérapeutique de cette technologie qui permettrait à des patients avec des lésions incomplètes de la moelle épinière de remarcher.
 
L’interface est composée d’un implant cérébral, d’un système d’enregistrement, d’un ordinateur, d’un stimulateur implantable et d’un implant spinal.
L’implant cérébral est une puce comparable à celles déjà utilisées chez l’Homme pour des recherches sur les interfaces cerveau-ordinateur, et placée chirurgicalement sur le cortex moteur.
Développé à l’Université Brown en collaboration avec les Drs Borton et Nurmikko, le système d’enregistrement est connecté à l’implant cérébral pour enregistrer l‘activité électrique et relayer celle-ci en temps réel et sans fil à un ordinateur.
L’ordinateur décode l’activité électrique cérébrale, grâce à des algorithmes spécifiquement développés pour détecter le souhait du singe d’effectuer tel ou tel mouvement en temps réel. Cette « intention » de se mouvoir est transformée en protocole de stimulation de la moelle épinière qui est transmis, là encore sans fil, au stimulateur spinal implantable.
Le stimulateur spinal implantable est du type de ceux communément utilisés pour la stimulation cérébrale profonde (exemples : maladie de Parkinson, tremblement essentiel). Tim Denison et son équipe (Medtronic Inc.) ont développé un nouveau petit logiciel incorporé dans le stimulateur pour recevoir les informations en temps réel. Le stimulateur spinal implantable reçoit le protocole de stimulation sans fil et délivre les instructions de stimulation via l’implant spinal.

L’implant spinal est composé de 16 électrodes préalablement placées chirurgicalement à des endroits précis sur la partie dorsale de la moelle épinière lombaire. Cet implant spinal active de manière synergique les groupes de muscles de la jambe paralysée, permettant la production des mouvements de flexion et d’extension nécessaires à la marche.

 

  DOCUMENT        inserm        LIEN

 
 
 
 

Mieux comprendre les mécanismes de progression des lésions rénales à l’origine de l’insuffisance rénale chronique

 

       

 

 

 

 

 

Mieux comprendre les mécanismes de progression des lésions rénales à l’origine de l’insuffisance rénale chronique

| 23 JANV. 2019 - 14H44 | PAR INSERM (SALLE DE PRESSE)

PHYSIOPATHOLOGIE, MÉTABOLISME, NUTRITION


L’équipe du Dr Guillaume Canaud, praticien hospitalo-universitaire à l’hôpital Necker-Enfants malades – AP-HP et à l’Université Paris Descartes, et chercheur à l’Inserm (INEM l’Institut Necker Enfants Malades – Centre de médecine moléculaire), a étudié, en collaboration avec celle du Pr Bonventre du Brigham and Women’s hospital – Harvard Medical School (Boston, USA), les mécanismes impliqués dans la progression de la fibrose des reins qui entraîne à terme une insuffisance rénale chronique. Ces travaux, qui ont été publiés dans la revue Science Translational Medicine le 23 janvier 2019, participent à l’identification d’une cible thérapeutique potentielle.

Les reins, à l’instar d’autres organes, ont la capacité inhérente de récupérer d’une agression aiguë (insuffisance rénale aiguë). En effet après agression (toxique par exemple), les cellules dites « épithéliales tubulaires », qui constituent la structure fonctionnelle des reins, meurent. Les cellules survivantes vont se mettre à proliférer de manière très intense pour repeupler en environ trois semaines les reins (réponse rénale dite adaptée). Cependant, si l’agression rénale est sévère ou prolongée, les cellules tubulaires n’arrivent pas à suffisamment proliférer pour compenser les pertes initiales. Ces cellules vont se mettre synthétiser des facteurs qui favorisent l’apparition de cicatrices fibreuses (fibrose) dans les reins (réponse rénale dite inadaptée). Cette fibrose sera responsable d’une altération de la fonction rénale, c’est-à-dire d’une insuffisance rénale chronique. Une fois ces mécanismes mis en place, la maladie rénale chronique, irréversible, s’auto entretient et progresse d’elle-même.

Les mécanismes cellulaires impliqués dans l’apparition de la fibrose rénale sont très mal connus.

L’équipe du Dr Guillaume Canaud, praticien hospitalo-universitaire à l’hôpital Necker-Enfants malades – AP-HP et à l’Université Paris Descartes, et chercheur à l’Inserm (INEM l’Institut Necker Enfants Malades – Centre de médecine moléculaire), a cherché, en collaboration avec celle du Pr Bonventre (Brigham and Women’s hospital – Harvard Medical School, Boston) à mieux comprendre les mécanismes impliqués dans la progression de la fibrose rénale.
En utilisant divers modèles murins expérimentaux de fibrose rénale, les chercheurs ont montré qu’au cours de la réponse rénale dite inadaptée, les cellules épithéliales tubulaires :
> n’avaient plus la capacité de se multiplier correctement (arrêt du cycle cellulaire) ;
> acquièrent un aspect de cellules sénescentes (ou vieillissantes) ;
> recrutent une voie de signalisation, appelée TOR-autophagy spatial coupling compartement (TASCC). En utilisant ce procédé, les cellules tubulaires se mettent à dégrader anormalement leurs organelles (autophagie) pour créer de l’énergie qui servira à la sécrétion de facteurs favorisant la fibrose des reins.
Enfin, les chercheurs ont mis en évidence que cette séquence d’évènements était induite par le recrutement d’une protéine appelée cycline G1, qui va provoquer l’arrêt du cycle cellulaire (impossibilité de proliférer normalement), le recrutement de TASCC, la sécrétion de facteurs favorisant la fibrose rénale, et ainsi la progression de la maladie rénale chronique.

Les chercheurs ont également montré que ces évènements se produisaient au cours des fibroses hépatiques et pourraient ainsi représenter une cible thérapeutique potentielle pour tout type de fibroses.
Cette étude a été financée par l’AP-HP, l’Université Paris Descartes, la Société française de néphrologie, la Fondation Bettencourt-Schueller, la Fondation Day Solvay, Emmanuel Boussard Foundation, Philippe Foundation, Safra Foundation et les National Institutes of Health (NIH).

 

 DOCUMENT        inserm        LIEN

 
 
 
 

Les pouvoirs extraordinaires des bactéries visualisés en direct

 

       

 

 

 

 

 

Les pouvoirs extraordinaires des bactéries visualisés en direct

COMMUNIQUÉ | 23 MAI 2019 - 20H00 | PAR INSERM (SALLE DE PRESSE)

BASES MOLÉCULAIRES ET STRUCTURALES DU VIVANT

Population de bactéries résistantes aux antibiotiques visualisées en microscopie à fluorescence en cellules vivantes. Cette population d’Escherichia coli possède un plasmide conjugatif qui code la protéine TetA (en rouge), une pompe à efflux responsable de la résistance à la tétracycline (en vert). On voit une claire anti-corrélation entre la présence de TetA et la présence de tétracycline dans les cellules. Bien que génétiquement identiques certaines bactéries parviennent à produire TetA et rejeter la tétracycline, lorsque d’autres accumulent l’antibiotique et ne parviennent pas à développer la résistance.©Christian Lesterlin

La dissémination globale de résistances aux antibiotiques est un problème majeur de santé publique et une priorité de la recherche internationale en microbiologie. Dans ses travaux à paraître dans Science, Christian Lesterlin, chercheur Inserm au sein du laboratoire ” Microbiologie moléculaire et biochimie structurale “(CNRS/Université Claude Bernard Lyon 1) à Lyon, a pu filmer avec son équipe le processus d’acquisition de l’antibiorésistance en temps réel, et a découvert un acteur essentiel mais inattendu dans son maintien et dans sa dissémination au sein des populations bactériennes.

Cette dissémination de l’antibiorésistance est en grande partie due à la capacité qu’ont les bactéries d’échanger du matériel génétique par un processus appelé conjugaison bactérienne. Le séquençage systématique de souches pathogènes ou environnementales a permis d’identifier une grande variété d’éléments génétiques transmissibles par conjugaison et porteurs des résistances à la plupart, sinon à toutes les classes d’antibiotiques actuellement utilisés dans les traitements cliniques. En revanche, le processus de transfert in vivo du matériel génétique d’une bactérie à l’autre, le temps nécessaire à l’acquisition de cette résistance une fois le nouveau matériel génétique reçu et l’effet des molécules antibiotiques sur cette résistance étaient encore inconnus.

Une visualisation en temps réel
Les chercheurs ont choisi d’étudier l’acquisition de la résistance de la bactérie Escherichia coli à un antibiotique couramment utilisé, la tétracycline en mettant une bactérie sensible à l’antibiotique en présence d’une bactérie résistante. Des études précédentes ont montré que cette résistance repose sur sa capacité à évacuer l’antibiotique avant qu’il n’ait pu jouer son rôle destructeur grâce à des “pompes à efflux” situées sur sa membrane. Ces pompes à efflux spécifiques, sont capables d’éjecter les molécules antimicrobiennes en dehors de bactéries, leur conférant ainsi un certain niveau de résistance.
Dans cette expérience, la transmission de l’ADN d’une “pompe à efflux” spécifique – la pompe TetA – a été observée entre une bactérie résistante et une bactérie sensible par marquage fluorescent.  Grâce à l’apport de la microscopie en cellule vivante, il suffisait alors de suivre la progression de la fluorescence pour voir, la manière dont l’ADN de la “pompe” migrait d’une bactérie à l’autre et comment il s’exprimait chez la bactérie receveuse.

Les chercheurs ont ainsi mis en évidence qu’en 1 à 2 heures seulement, le fragment d’ADN simple brin de la pompe à efflux était transformé en ADN double brin puis traduit en protéine fonctionnelle, conférant ainsi la résistance à la tétracycline à la bactérie receveuse.
 
Le transfert d’ADN des bactéries donneuses (vertes) aux bactéries receveuses (rouges) est révélé par l’apparition de foyers de localisation rouges. L’expression rapide des gènes nouvellement acquis est quant à elle révélée par la production de fluorescence verte dans les bactéries receveuses. Crédit vidéo : Christian Lesterlin/Inserm

Comment la résistance s’organise-t-elle en présence d’antibiotique?
Le mode d’action de la tétracycline est bien connu des scientifiques : elle entraine la mort des bactéries en se fixant sur leur machinerie traductionnelle bloquant ainsi toute possibilité de produire des protéines. En suivant ce raisonnement, lorsque l’antibiotique est introduit dans le milieu de culture précédent, la pompe à efflux TetA ne devrait pas être produite et les bactéries devraient mourir. Pourtant, les chercheurs ont observé que paradoxalement, les bactéries étaient capables de survivre et de développer la résistance efficacement, suggérant l’implication d’un autre facteur essentiel au processus d’acquisition de résistance.

Les scientifiques ont découvert que ce phénomène s’explique par l’existence d’une autre pompe à efflux présente chez quasiment toutes les bactéries : la pompe AcrAB-TolC. Bien que cette pompe généraliste soit moins efficace que la pompe TetA, elle évacue tout de même un peu d’antibiotique hors de la cellule. Les bactéries peuvent ainsi maintenir une activité minimale de synthèse protéique. Ainsi, si la bactérie a la chance d’avoir reçu un gène de résistance par conjugaison, alors la pompe TetA est produite, et la bactérie devient durablement résistante.

Cette étude ouvre de nouvelles perspectives dans la recherche de mécanismes similaires chez d’autres bactéries que E.coli, et pour différents antibiotiques. “On pourrait même penser à une thérapie combinatoire qui allierait l’antibiotique et une molécule capable d’inhiber cette pompe généraliste. Même s’il est encore trop tôt pour envisager l’utilisation d’un tel inhibiteur dans une perspective thérapeutique, cette possibilité fait actuellement l’objet de nombreuses études car elle permettrait de réduire l’antibiorésistance, et d’empêcher sa dissémination aux différentes espèces de bactéries” conclut Christian Lesterlin.

 

  DOCUMENT        inserm        LIEN

 
 
 
 

Une nouvelle voie pour moduler la réponse immunitaire anti-tumorale

 

 

 

 

 

 

 

Une nouvelle voie pour moduler la réponse immunitaire anti-tumorale

| 14 NOV. 2018 - 17H57 | PAR INSERM (SALLE DE PRESSE)
CANCER

Des chercheurs de l’Inserm, du CNRS, de l’Université Paris-Sud, de Gustave Roussy et de l’Institut Curie ont identifié un nouvel acteur dans la régulation de l’expression du gène PD-L1 : il s’agit du complexe eIF4F dont le rôle est de contrôler la fabrication des protéines.
Ce complexe pourrait devenir un marqueur prédictif de réponse aux traitements par immunothérapie. Par ailleurs, les chercheurs montrent pour la première fois qu’en inhibant ce complexe eIF4F, on obtient un effet anti-tumoral qui est lié à la diminution de l’expression de PD-L1, et qui fait donc intervenir le système immunitaire.

Ils espèrent pouvoir utiliser des inhibiteurs d’eIF4F comme agents anti-cancéreux dans le futur, seuls ou plus probablement en combinaison avec d’autres traitements.

Le système immunitaire, qui assure notre défense contre les maladies, paraissait désarmé il y a encore quelques années pour combattre le cancer. Les avancées en immunothérapie permettent de corriger cette déficience : il est désormais possible d’apprendre au système immunitaire à reconnaître et à détruire les cellules cancéreuses. Les lymphocytes retrouvent alors leur capacité initiale à combattre la tumeur au lieu de la protéger.
Exprimée à la surface des lymphocytes T, la molécule PD-1 (programmed cell death) se lie à une autre molécule présente à la surface de certaines cellules tumorales ou immunitaires, PD-L1. Cette interaction rend, en quelque sorte, la cellule tumorale invisible au système immunitaire, en désactivant (ou désarmant) le lymphocyte T.
Depuis quelques années, les traitements par immunothérapies ciblant l’interaction entre PD-L1 et PD-1 ont révolutionné la prise en charge du mélanome et d’autres cancers.
Cependant de nombreux patients ne répondent pas au traitement. Ces molécules sont très efficaces pendant plusieurs mois ou années mais chez seulement 10 à 20% des patients, tous types de cancers confondus.

« Le développement de biomarqueurs est donc un enjeu majeur pour être capable d’identifier les patients susceptibles de répondre au traitement » explique le Pr Caroline Robert, chef du service de dermatologie à Gustave Roussy.
« Une quantité élevée de PD-L1 dans les tumeurs est un indicateur important car elle est souvent associée à de bonnes réponses aux anti-PD1. Cependant, les mécanismes de la régulation de l’expression de PD-L1 ne sont pas complètement connus » précise Stephan Vagner, directeur de recherche Inserm et chef de l’équipe Biologie de l’ARN à l’Institut Curie.

Dans cette nouvelle publication, les chercheurs montrent pour la première fois qu’un complexe appelé eIF4F, qui est impliqué dans la phase d’initiation de la traduction des ARN messagers en protéines, régule l’expression de PD-L1 et qu’en ciblant eIF4F dans les cellules tumorales, il est possible de stimuler l’immunité anti-tumorale mimant ainsi l’effet d’une immunothérapie.

Dans cette étude, les chercheurs ont principalement utilisé le mélanome comme modèle mais ils ont également réalisé des expériences avec des cellules de cancer du poumon, du sein et du colon.
Ils vont maintenant évaluer l’apport de l’étude de la formation du complexe eIF4F en tant que marqueur prédictif de réponse aux traitements par immunothérapie.
Ils développent par ailleurs des modèles de traitements de mélanome reposant sur l’utilisation d’inhibiteurs du complexe eIF4F en combinaison avec d’autres traitements afin d’augmenter l’efficacité thérapeutique et de lutter contre les résistances.
                                               
Cette étude a été soutenue par l’Inserm, le CNRS, Gustave Roussy et l’Institut Curie. Elle est également financée grâce à la Ligue Nationale Contre le Cancer (Equipe labellisée), l’Institut National du Cancer, le collectif ‘Ensemble contre le mélanome’ et l’association ‘Vaincre le Mélanome’, le SIRIC Socrate, la Fondation Bettencourt Schueller et la Fondation ARC pour la Recherche sur le Cancer.

 

 DOCUMENT        inserm        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google