ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

NERF

 


 

 

 

 

 

nerf

Consulter aussi dans le dictionnaire : nerf
Cet article fait partie du dossier consacré au système nerveux.
Cordon blanchâtre composé de fibres nerveuses, conduisant les messages moteurs du système nerveux central vers les organes, et les messages sensitifs et sensoriels en sens inverse.

Les nerfs, avec les ganglions nerveux (petits renflements sur le trajet des nerfs), constituent le système nerveux périphérique, par opposition au système nerveux central (encéphale et moelle épinière).

STRUCTURE DES NERFS

Les nerfs sont formés de fibres nerveuses parallèles, qui sont elles-mêmes des prolongements (axones ou dendrites) de cellules nerveuses (→ neurones). Outre les fibres nerveuses, les nerfs comportent des cellules de Schwann, qui forment une gaine (myéline) autour de certaines fibres ; un tissu de protection (tissu conjonctif) entoure les faisceaux de fibres (périnèvre) et l'ensemble du nerf (épinèvre).

FONCTION

Dans un nerf coexistent deux sortes de fibres : les fibres motrices, qui amènent des informations vers les organes et les tissus, et les fibres sensitives, qui transportent des informations vers le système nerveux central.
Parmi les fibres, on distingue par ailleurs les fibres somatiques (appartenant au système nerveux de la vie de relation, conscient), qui innervent les muscles squelettiques, la peau et les articulations, et les fibres végétatives (appartenant au système nerveux autonome, inconscient), qui innervent la paroi et les muscles des viscères et les glandes.
C'est pourquoi les nerfs se classent selon deux critères, qui sont leur composition en fibres et la partie du système nerveux central à laquelle ils sont rattachés.
Selon leur composition en fibres, on distingue, d'une part, les nerfs moteurs (allant jusqu'aux muscles) et les nerfs sensitifs (partant des organes des sens) et, d'autre part, les nerfs végétatifs (innervant les viscères et les glandes). En réalité, beaucoup de nerfs sont mixtes, composés de plusieurs types de fibres.

Selon la partie du système nerveux central à laquelle ils sont rattachés, on distingue les nerfs rachidiens (rattachés à la moelle épinière) et les nerfs crâniens (rattachés à l'encéphale).

PATHOLOGIE
Les nerfs peuvent être lésés au cours de différentes circonstances :
– névrite (atteinte inflammatoire, toxique ou infectieuse) ;
– compression (celle du nerf médian dans le canal carpien du poignet, par exemple) ;
– tumeur (névrome, neurinome) ;
– traumatisme (souvent par une section par une arme blanche ou par balle).
Voir aussi : fibre nerveuse, neurinome, névrite, névrome.

 

  DOCUMENT   larousse.fr    LIEN

 
 
 
 

Maîtriser la peur : le cervelet, partenaire inattendu des troubles de l’humeur

 

 

 

 

 

 

 

Maîtriser la peur : le cervelet, partenaire inattendu des troubles de l’humeur

14 AVR 2023 | PAR INSERM (SALLE DE PRESSE) | BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION | NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE


Les Axones du cervelet (en bleu) se retrouvent autour de neurones du thalamus qui vont vers le cortex préfrontal (vert) mais pas autour de ceux qui vont vers l’amygdale (rouge), autre région impliquée dans le contrôle des émotions. ©Equipe Neurophysiologie des Circuits Cérébraux, Inserm/CNRS/ENS-PSL

Les travaux d’une équipe pilotée par Clément Léna et Daniela Popa, directeurs de recherche Inserm à l’Institut de Biologie de l’ENS, parus dans Nature Communications révèlent l’importance du cervelet dans les émotions. Cette région du cerveau, surtout connue pour son rôle dans le contrôle moteur, agit aussi sur une aire du cortex préfrontal impliquée dans les émotions, et par ce biais régule l’extinction des souvenirs aversifs. Ce travail ouvre la voie à une meilleure compréhension de la régulation des émotions dans les troubles de l’humeur, mais aussi dans diverses conditions pathologiques comme par exemple l’anoxie périnatale, les tumeurs cérébrales ou encore les effets de l’alcool.

Pour survivre ou simplement optimiser son existence, mieux vaut être capable de reconnaître les risques et ajuster sa conduite en conséquence. Par des mécanismes associatifs, le cerveau apprend à identifier les indices annonciateurs du danger. Ces associations doivent être continuellement mises à jour, notamment pour reconnaître l’innocuité d’indices perçus jusque-là comme menaçants mais ne s’avérant plus associés à un danger.

Un défaut dans les processus de neutralisation de tels indices exposerait à accumuler seulement les associations négatives en conduisant, par exemple, à maintenir indéfiniment des réponses émotionnelles intenses à un traumatisme passé. Cependant, plutôt que d’oublier ces indices devenus négligeables, une des méthodes employées par le cerveau est de confier au cortex préfrontal le soin de réprimer leur signification aversive, grâce à un véritable apprentissage de l’innocuité, aussi appelé extinction.

En étudiant le cerveau des souris, l’équipe composée de chercheurs et chercheuses de l’ENS-PSL et de l’Inserm a montré que la zone du cortex préfrontal en charge de cette fonction reçoit des informations en provenance du cervelet (via un relai dans le thalamus, cf. figure). Les chercheurs sont parvenus à effectuer une inactivation ciblée de cette projection en y introduisant des récepteurs inhibiteurs artificiels. Ils ont observé que lorsque ce circuit est inactivé, la réponse de peur à un stimulus qui ne représente plus un danger se prolonge anormalement, ce qui indique un déficit d’apprentissage.

Les enregistrements de l’activité dans ce circuit cérébral ont alors révélé que le cervelet participe à l’apprentissage de la répression des souvenirs négatifs en stoppant des activités rythmiques cérébrales associées à l’état de peur.

Ces travaux complètent une étude précédente de la même équipe, qui avait démontré que l’intensité de l’association « indices – dangers » était également sous contrôle du cervelet, par des projections vers une autre région du cerveau que le cortex préfrontal.

Alors que le cervelet est très connu pour son rôle dans le système moteur (les effets moteurs de l’alcool sont par exemple à peu près entièrement dus à un effet sur le cervelet), ces démonstrations d’une régulation par le cervelet de la formation et de l’extinction de la mémoire émotionnelle sont importantes. Elles montrent que cette structure agit sur les processus clés de la régulation des émotions générées par nos expériences passées. Ce travail ouvre notamment la voie à une meilleure compréhension de la régulation des émotions dans les troubles de l’humeur, mais aussi dans diverses conditions pathologiques, liées par exemple à la sensibilité du cervelet à l’anoxie périnatale, aux tumeurs cérébrales ou aux effets de l’alcool.

 

  DOCUMENT       inserm      LIEN

 
 
 
 

Les Nanoblades : des navettes pour opérer le génome

 

 

 

 

 

 

 

Les Nanoblades : des navettes pour opérer le génome

27 MAR 2019 | PAR INSERM (SALLE DE PRESSE) | BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION | IMMUNOLOGIE, INFLAMMATION, INFECTIOLOGIE ET MICROBIOLOGIE


©Adobestock

Pour éditer le génome de façon précise, les chercheurs disposent désormais des « ciseaux génétiques » CRISPR/Cas9, outil très prometteur pour la thérapie génique. Le défi technologique aujourd’hui est d’amener cet outil jusqu’au génome de certaines cellules. Dans cet objectif, une équipe associant l’Inserm, le CNRS, l’Université Claude Bernard Lyon 1 et l’École normale supérieure de Lyon au sein du Centre international de recherche en infectiologie (CIRI) ont développé des capsules permettant d’amener CRISPR/Cas9 jusqu’à l’ADN cible : les Nanoblades. Décrites dans Nature Communications, elles ouvrent des perspectives pour la recherche sur l’édition du génome des cellules souches humaines.

Depuis 2012, la communauté scientifique dispose d’une méthode révolutionnaire pour « opérer » le génome de façon précise : le système CRISPR/Cas9. Ces ciseaux moléculaires sont capables de couper l’ADN à un endroit précis dans une grande variété de cellules. Ils offrent par conséquent des perspectives considérables pour la recherche et pour la santé humaine. Cependant, amener ces « ciseaux génétiques » jusqu’à leur cible – notamment le génome de certaines cellules souches – reste un défi technique.

C’est sur cette problématique que travaillent des équipes de recherche de l’Inserm, du CNRS, de l’Université Claude Bernard Lyon 1 et de l’École normale supérieure de Lyon qui ont développé les Nanoblades[1], des particules qui permettent de délivrer CRISPR/Cas9 dans de nombreuses cellules, y compris des cellules humaines.

Les scientifiques ont eu l’idée d’encapsuler le système CRISPR/Cas9 dans des structures ressemblant beaucoup à des virus et assurer ainsi sa livraison au sein d’une cellule cible, en fusionnant avec la membrane de cette dernière.

Pour concevoir ces Nanoblades, les chercheurs ont exploité les propriétés de la protéine rétrovirale GAG, qui a la capacité de produire des particules virales non infectieuses car dénuées de génome. L’équipe de recherche a fusionné la protéine GAG d’un rétrovirus de souris avec la protéine CAS9 – le ciseau du système CRISPR. Cette nouvelle protéine dite « fusion » fait l’originalité des Nanoblades.

Par conséquent, et à l’inverse des techniques classiquement utilisées pour modifier le génome, les Nanoblades encapsulent un complexe CRISPR/Cas9 immédiatement fonctionnel ; elles ne délivrent donc aucun acide nucléique codant le système CRISPR/Cas9 dans les cellules traitées. « L’action de CRISPR/Cas9 dans les cellules est ainsi temporaire. Elle est également plus précise et préserve les régions non ciblées du génome, atout particulièrement important dans le cadre d’applications thérapeutiques », précisent les auteurs.

Enfin, les chercheurs ont utilisé une combinaison originale de deux protéines d’enveloppe virales à la surface des Nanoblades pour leur permettre d’entrer dans une large gamme de cellules cibles.


Les scientifiques ont démontré l’efficacité des Nanoblades in vivo, dans l’embryon de souris, pour un large spectre d’applications et dans un large panel de cellules cibles où d’autres méthodes sont peu performantes. « Les Nanoblades s’avèrent notamment efficaces pour corriger le génome des cellules souches humaines, cellules d’un grand intérêt thérapeutique (notamment dans la reconstitution de tissus) mais restant difficiles à manipuler par les méthodes habituelles », précisent les auteurs de ces travaux.

 

 DOCUMENT        inserm        LIEN

 
 
 
 

Un contrôle de neurorécepteur par la lumière pour atténuer les symptômes de la douleur chronique

 

 

 

 

 

 

 

Un contrôle de neurorécepteur par la lumière pour atténuer les symptômes de la douleur chronique

20 décembre 2016    BIOLOGIE SANTÉ

La douleur nous sert de précieux signal d'alarme, mais elle se transforme en véritable maladie lorsqu'elle devient chronique. Une équipe internationale, comprenant des chercheurs du CNRS et de l'Inserm1, a identifié et contrôlé un des centres associés aux douleurs chroniques. Ces travaux, publiés le 20 décembre 2016 dans Molecular Psychiatry, ont permis d'en soulager les symptômes chez des souris et de montrer la capacité du cerveau d'y remédier.

Alors qu'environ 20% de la population européenne a connu des épisodes de douleur chronique, les traitements sont efficaces chez moins de la moitié des patients. Cette maladie est pourtant associée à des modifications du système nerveux. Les chercheurs souhaitent donc comprendre comment le cerveau module la douleur physique et les désordres affectifs et cognitifs qui l'accompagnent : anxiété, perte des émotions positives, hypersensibilité à la douleur… Dans cette étude, ils se sont penchés sur l'amygdale, une région du cerveau impliquée dans la gestion de la douleur et des émotions, et sur le récepteur du glutamate de type 4 (mGlu4). Il s'agit du principal transmetteur des signaux de douleur dans le système nerveux des mammifères. Ce neurorécepteur détecte la présence du glutamate et diminue, selon les besoins, sa libération au niveau de la synapse.

Afin d'étudier ces récepteurs, les chercheurs utilisent en général un ligand capable de les activer ou de les inhiber. Ils ont innové en créant un ligand particulier photo-contrôlable, l'optogluram, dont l'action sur mGlu4 est pilotée par la lumière. L'utilisation de fibres optiques leur permet alors de contrôler très précisément l'activation du neurorécepteur dans une zone donnée du cerveau. Les scientifiques se sont penchés sur des souris conscientes et libres de leurs mouvements, atteintes de douleurs inflammatoires chroniques. En activant l'optogluram par la lumière, ils ont pu inhiber de manière rapide et réversible ces symptômes douloureux, démontrant ainsi que le cerveau de ces souris conservait sa capacité à contrer ces effets. Avec l'identification d'un modulateur capable d'agir sur la douleur chronique, ces travaux sont  porteurs d'espoirs thérapeutiques.
 


Vue des synapses dans l'amygdale d'une souris, obtenue par microscopie confocale. En rouge les récepteurs mGlu4 et en vert ceux de mGlu1a. La barre blanche en bas à droite correspond à 5 μm.
 
1
Bibliographie
Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4.
Charleine Zussy, Xavier Gómez-Santacana, Xavier Rovira, Dimitri De Bundel, Sara Ferrazzo, Daniel Bosch, Douglas Asede, Fanny Malhaire, Francine Acher, Jesús Giraldo, Emmanuel Valjent, Ingrid Ehrlich, Francesco Ferraguti, Jean-Philippe Pin, Amadeu Llebaria & Cyril Goudet
Publié le 20/12/2016 dans Molecular Psychiatry.


Contact
Cyril Goudet
CNRS Scientist
+33 (0)4 34 35 92 77
cyril.goudet@igf.cnrs.fr
Martin Koppe


CNRS Press Office
+33 1 44 96 51 51
presse@cnrs.fr

 

DOCUMENT         CNRS         LIEN 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google