ecole de musique toulon, cours de piano
     
 
 
 
 
 
menu
 
 

LUTTE CONTRE LES ANTIBIOTIQUES

 

 

 

 

 

 

 

COMBACTE : Un nouveau pas dans la lutte contre les résistances aux antibiotiques

COMMUNIQUÉ | 21 FÉVR. 2013 - 10H11 | PAR INSERM (SALLE DE PRESSE)

EUROPE | IMMUNOLOGIE, INFLAMMATION, INFECTIOLOGIE ET MICROBIOLOGIE


La résistance antimicrobienne représente un problème majeur et grandissant de santé publique du fait d’une raréfaction des antibiotiques disponibles contre les bactéries résistantes. Le projet COMBACTE, qui vient d’obtenir un financement de l’Innovative Medicines Initiative (IMI) à hauteur de 195 millions d’euros, a pour but d’œuvrer au développement de nouveaux antibiotiques et à la mise en place d’une plateforme d’essais cliniques performante, associant recherche privée et publique.
La mise au point d’essais cliniques innovants sur les antibiotiques

Le projet COMBACTE (Combatting Bacterial Resistance in Europe), issu du 6ème appel d’offres de l’IMI, est l’un des projets du programme « New Drugs For Bad Bugs » (ND4BB). Il est né de l’association initiale de partenaires industriels avec deux consortiums académiques : Eu-ACT et INCRAID, portés respectivement par Marc Bonten de l’Université d’Utrecht et par Bruno François du CHU de Limoges, tous deux assurant la coordination globale du projet aux côtés des représentants de l’EFPIA, Scott White (GlaxoSmithKline) et Seamus O’Brien (Astra Zeneca).

Ce projet, qui se déroulera sur 7 ans et qui réunira une vingtaine de partenaires à travers l’Europe, a pour objectif de générer des essais innovants pour faciliter l’enregistrement des nouveaux agents antibactériens au travers notamment de la constitution d’un réseau d’investigateurs expérimentés.

Il permettra également de concevoir et valider des tests pour étayer le diagnostic des patients, d’identifier les traitements les plus appropriés et de surveiller la réponse thérapeutique.

Une grande partie du projet sera consacrée à la réalisation d’essais cliniques de médicaments anti-infectieux en cours de développement par les sociétés pharmaceutiques impliquées dans le programme. Le premier antibiotique à se soumettre aux essais cliniques dans COMBACTE est développé par le laboratoire GlaxoSmithKline.
A ces fins, le budget total du projet COMBACTE s’élève à près de 195 millions d’euros, un niveau de financement jusque-là inégalé en recherche clinique privée/publique.
Les partenaires français du projet européen COMBACTE
Parmi les différents partenaires, plusieurs acteurs français sont impliqués dans le projet COMBACTE.
Le Dr Bruno François, sous l’égide du CHU de Limoges, aura la responsabilité de la coordination des essais cliniques en collaboration avec les tous les centres investigateurs européens et les équipes de Recherche du Groupe GSK et de GSK France (Direction Médicale GSK France). Le Dr François participera également à la gestion globale du projet.
L’Inserm et sa délégation régionale Midi-Pyrénées/Limousin sous la direction d’Armelle Barelli, assureront la gestion du budget de l’ensemble des essais cliniques du projet.
ECRIN (European Clinical Research Infrastructures Network – Réseau européen d’infrastructures en recherche clinique), coordonné par l’Inserm et dirigé par le Pr Jacques Demotes, est une infrastructure qui a pour mission de faciliter la mise en place d’essais internationaux en Europe. ECRIN sera chargé du management des essais cliniques du projet au travers de ses partenaires européens, assurant une coordination entre les différents réseaux nationaux.

Le Dr Laurent Abel (Inserm U980 « Génétique humaine des maladies infectieuses »), autre participant français au sein du consortium, participera à l’identification chez l’homme de marqueurs génétiques influençant la susceptibilité/résistance aux infections bactériennes et la réponse à leur traitement, aux côtés de deux autres partenaires.

Deux réseaux français participeront par ailleurs aux essais cliniques du projet COMBACTE : le Réseau National de Recherche Clinique en Infectiologie (RENARCI) coordonné par le Pr Bruno Hoen (CHU de Besançon), avec le soutien de l’Institut Thématique Multi-Organismes « Microbiologie et Maladies Infectieuses » (IMMI) dirigé par le Pr Jean-François Delfraissy, et le réseau CRICS (Clinical Research in Intensive Care and Sepsis – Recherche clinique en soins intensifs et dans le Sepsis) sous la responsabilité du Dr Bruno François et du Pr Pierre-François Dequin au CHU de Tours. Le Groupe pour la Recherche et l’Enseignement en Pneumo-Infectiologie (Groupe de Travail émanant de la Société de Pneumologie de Langue Française) coordonné par le Pr Anne Bergeron à l’AP-HP Saint-Louis avec la collaboration du Dr Muriel Fartoukh à l’APHP Tenon sera associé au réseau CRICS.
COMBACTE, un projet unique d’excellence à visibilité internationale
COMBACTE est le premier partenariat privé/public européen mis en place dans le domaine du développement médicamenteux.
Le développement de nouveaux antibiotiques représente un défi qui justifie l’association de plusieurs acteurs. En réunissant des professionnels issus d’univers variés (organismes de recherche, universités, hôpitaux et industries pharmaceutiques) spécialisés à la fois en microbiologie, en épidémiologie, en développement médicamenteux et dans les essais cliniques, COMBACTE a pour vocation d’améliorer et d’accélérer le développement d’antibiotiques.
Unique dans son domaine, ambitieux, avec des bénéfices attendus pour les patients, la santé publique et la recherche en Europe, COMBACTE est en passe de devenir la référence en matière de développement de médicaments antimicrobiens en Europe.

La lutte contre les résistances antimicrobiennes – le programme « New Drugs For Bad Bugs »
La résistance des bactéries aux antibiotiques représente une menace mondiale importante et grandissante en santé humaine et animale. Selon l’Organisation mondiale de la santé, « la résistance aux antibiotiques est en train de devenir une urgence de santé publique en des proportions encore inconnues ». En Europe, la résistance aux antibiotiques est responsable de plus de 25 000 décès chaque année et les coûts des traitements sont estimés à 1,5 milliard d’euros par an. Tous les jours de nouvelles formes de résistance apparaissent, laissant les médecins de plus en plus dépourvus de solutions pour lutter contre les infections. Malgré le besoin reconnu de développer de nouvelles armes antibiotiques, seules deux nouvelles classes de médicaments ont été mises sur le marché ces 30 dernières années.
Aussi, en 2011, dans son plan d’action contre les menaces croissantes de la résistance antimicrobienne, la Commission européenne a appelé à une « recherche collaborative sans précédent et à un effort de développement de nouveaux antibiotiques » avec, entre autres, le lancement du 6ème appel d’offres de l’IMI en mai 2012 dans le cadre du programme « New Drugs For Bad Bugs » (littéralement : de nouveaux médicaments pour les vilains microbes).


IMI : un programme unique de partenariat public-privé
IMI (Innovative Medicines Initiative) est un programme unique de partenariat public-privé paneuropéen entre la Commission européenne et l’EFPIA (European Federation of Pharmaceutical Industries and Associations), chaque partie apportant une enveloppe d’1 milliard d’euros destinée à financer différents projets au travers d’appels d’offres.
Le but d’IMI est de proposer une approche coordonnée pour favoriser le développement de traitements plus sûrs et efficaces pour les patients en encourageant les collaborations entre divers intervenants comme les partenaires académiques et industriels, les autorités publiques ou les associations de patients et en augmentant la compétitivité européenne.


Ce projet est financé par l’IMI (www.imi.europa.eu) sous l’Accord de Subvention n°115523, constitué d’une part de la contribution financière du Septième Programme de l’Union Européenne (FP7/2007-2013) et d’autre part de celle des entreprises de l’EFPIA.

 

   DOCUMENT        inserm        LIEN

 
 
 
 

ALLERGIES

 



 

 

 

 

 

Allergies

Sous titre
Un dérèglement du système immunitaire de plus en plus fréquents

L’allergie est un dérèglement du système immunitaire qui correspond à une perte de la tolérance vis-à-vis de substances a priori inoffensives : les allergènes. Si le nombre de personnes allergiques semble considérablement augmenté depuis plusieurs décennies, il existe aujourd’hui des solutions efficaces pour leur prise en charge, qu’il s’agisse de traitement médicamenteux ou de stratégie de désensibilisation.
       

Dossier réalisé avec la collaboration du conseil scientifique de la Société française d'allergologie

Comprendre les allergies
Les allergies peuvent avoir des manifestations cutanées (urticaire, dermatite), respiratoires (rhinite, asthme) ou généralisées (anaphylaxie) et leur prévalence
prévalence
Nombre de cas enregistrés à un temps T.
a considérablement augmenté au cours des 20-30 dernières années dans les pays industrialisés : on estime aujourd’hui que 25 à 30% de la population est concernée par une maladie allergique. Et si les allergies sont particulièrement fréquentes chez les enfants et les jeunes adultes, tout le monde peut en souffrir, avec des variations selon les pays et l’âge.
Aujourd’hui, la prévalence de la dermatite atopique est évaluée à 15-20%,  celle de l’asthme à 7-10 %, celle de la rhinite et de la conjonctivite allergique autour de 15-20%. La prévalence des allergies alimentaires oscillerait entre 2% chez l’adulte et 5% chez les enfants.

Les mécanismes de l’allergie
Notre système immunitaire est spécialisé dans la reconnaissance des corps étrangers comme les parasites, les bactéries ou encore les virus. Quand l’un d’eux pénètre l’organisme, le système immunitaire produit des molécules spécialisées, chargées de reconnaître l’intrus puis de le détruire. L’allergie est un dérèglement du système immunitaire qui correspond à une perte de la tolérance vis-à-vis de substances a priori inoffensives : les allergènes.
Pour que l’allergie se déclenche, deux conditions sont nécessaires :
*         une prédisposition génétique,
*         une exposition à la substance allergène.
Les mécanismes à l’origine des maladies allergiques sont de mieux en mieux compris. Les maladies allergiques peuvent être dues aux anticorps
anticorps
Protéine du système immunitaire, capable de reconnaître une autre molécule afin de faciliter son élimination.
et/ou aux lymphocytes T, des cellules spécialisées du système immunitaire. Ainsi, l’eczéma et l’asthme chronique sont causés par des lymphocytes T. Ces cellules infiltrent la peau et les bronches où elles sont activées par des allergènes eux-mêmes capables d’y pénétrer. Mais, la majorité des allergies sont causées par des anticorps, les immunoglobulines
immunoglobulines
Protéine du système immunitaire/Anticorps.
de type E (IgE). Elles sont dites IgE-dépendantes.
Chez les non allergiques, la fonction normale des IgE est de lutter contre les parasites. Ces anticorps sont couramment fabriqués par le système immunitaire. Ils circulent à l’état libre dans le sérum
sérum
Le sérum correspond le liquide sanguin débarrassé de ses cellules et des protéines de la coagulation. Principalement constitué d'eau, il contient principalement des protéines (dont des anticorps) et des ions.
sanguin et sont aussi retrouvés associés à des cellules du système immunitaire particulièrement nombreuses dans la peau, les poumons et le tube digestif : les polynucléaires basophiles et les mastocytes tissulaires. Cela explique la localisation des symptômes allergiques. Lorsqu’un allergène se lie à des IgE associés à une de ces cellules, cette dernière est "activée". Elle va alors relarguer des médiateurs chimiques : histamine, tryptase, leucotriènes, prostaglandines… Ces molécules sont responsables des rougeurs, sécrétions et œdèmes observés lors de la réaction allergique.

Qu’est-ce que l’atopie ?
L’atopie est un phénomène héréditaire. Ce terme désigne la fabrication par le système immunitaire d’anticorps IgE spécifiquement dirigés contre une substance allergène. Les principales manifestations de l’atopie sont l’asthme, la rhinite et conjonctivite allergique et la dermatite atopique.

Le diagnostic des allergies
Une allergie est diagnostiquée par un médecin allergologue. Au-delà du diagnostic, le médecin identifiera l’allergène responsable de l’allergie.
La visite commence par un interrogatoire minutieux, visant à détailler les symptômes, les circonstances déclenchantes, les antécédents du patient et de sa famille, son environnement (condition de vie habituel et occasionnel, école et loisir, exposition aux animaux domestiques, tabagisme passif…) et ses habitudes de vie. L’examen se poursuit par un examen clinique, en particulier des poumons (écoute des sifflements), des yeux (conjonctivite, eczéma sur la paupière), du nez (aspect et couleur de la muqueuse, présence de polypes
polypes
Tumeur bénigne qui se développe sur les muqueuses.
, état de l’obstruction), de la peau…
Lorsque la suspicion d’allergie est confirmée par l’interrogatoire et l’examen clinique, le médecin allergologue procède à des tests cutanés, les prick-tests. Ceux-ci peuvent être pratiqués dès les premiers mois de vie, dès lors qu’une allergie est suspectée. Le prick-test est le plus souvent effectué sur la face interne de l’avant-bras (parfois dans le dos chez le nourrisson). Il consiste à piquer l'épiderme, à l'aide d'aiguilles spéciales, au travers d'une goutte d'un extrait allergénique préalablement déposée sur la peau. Outre les allergènes à tester, le médecin dépose une goutte d’une solution "témoin négatif" (simple solution à la glycérine) et une goutte "témoin positif" (histamine et/ou codéine). Aucune réaction ne doit se produire au niveau du témoin négatif : il permet d’écarter une allergie de frottement (dermographisme). En revanche, une réaction locale doit s’observer au niveau du témoin positif : il permet de s’assurer que le patient n’est pas/plus sous l’effet des médications antiallergiques.

Les examens sanguins
Les dosages les plus utilisés en allergologie concernent les immunoglobulines E spécifiques d’allergènes. Ces examens sanguins permettent de confirmer l’identité d’allergènes détectés lors des tests cutanés. Ce dosage est également utile lorsque les tests cutanés sont impossibles.
La dernière étape du diagnostic d’une allergie passe par des tests de provocation : ils apportent la preuve d'un lien direct entre une sensibilisation et la pathologie observée. Ils sont réalisés par administration de l’allergène au niveau de la muqueuse respiratoire ou digestive. Ils sont limités par leur danger potentiel, leur complexité de réalisation et d'interprétation. Les tests de provocation restent toutefois un temps essentiel du diagnostic d'allergie alimentaire.  Ils suivent des règles précises : ainsi, ils doivent être impérativement réalisés dans des structures aptes à prendre en charge des réactions allergiques graves, avec un personnel médical et non médical hautement spécialisé.
*        
Le traitement des allergies
La prise en charge des maladies allergiques est globale. Néanmoins, elle débute par l’éviction des allergènes mis en évidence par les tests d’allergie, lorsque cela est possible. Cette mesure d’éviction est associée à des traitements médicamenteux (principalement l’utilisation d’antihistaminiques), ainsi qu’à des mesures éducatives pour éviter les récidives et les crises d’allergie.

La désensibilisation, ou immunothérapie
immunothérapie
Traitement qui consiste à administrer des substances qui vont stimuler les défenses immunitaires de l’organisme, ou qui utilise des protéines produites par les cellules du système immunitaire (comme les immunoglobulines).
allergénique (ITA), a pour but de rendre le patient tolérant vis-à-vis de l’allergène responsable. C’est une sorte de traitement vaccinal des allergies, reposant sur l’administration régulière d’extraits allergéniques pendant une période prolongée, idéalement 3 à 5 ans. Néanmoins, les bénéfices sont beaucoup plus précoces, apparaissant nettement au bout de trois ou quatre mois. L’immunothérapie allergénique s’applique préférentiellement aux patients souffrant d’allergies aux acariens, aux pollens, ou au venin d’hyménoptères. Pendant longtemps, la désensibilisation se faisait par injections sous-cutanées, hebdomadaires puis mensuelles. Depuis plusieurs années, on tend à lui préférer  la voie sublinguale, moins contraignante et mieux tolérée. Il s’agit de prendre le matin des gouttes d’allergènes, gardées deux minutes sous la langue puis avalées. Enfin, des comprimés sont maintenant disponibles pour certains allergènes.
L’effet protecteur de la désensibilisation se prolonge habituellement plusieurs années après l’arrêt de celle-ci. Plusieurs études montrent, en outre, que ce traitement réduit le risque de développer d’autres allergies.

*        
Les allergènes
On distingue plusieurs catégories d’allergènes :
*         Les pneumallergènes ou aéro-allergènes
*         Ils pénètrent l’organisme par voie aérienne et respiratoire. Les plus fréquents sont les acariens, les poils d’animaux, les pollens et les moisissures. Il existe des pneumallergènes d’intérieur (ex : les acariens) et d’extérieur (ex : les pollens).
*         Les trophallergènes
*         Ils pénètrent le corps par ingestion (voie alimentaire). Tous les aliments sont capables de déclencher une allergie, mais les principaux sont le lait de vache (PLV pour protéine du lait de vache), les œufs de poule et l’arachide. Citons également les poissons et fruits de mer, le sésame, les fruits à coque comme la noisette,  les fruits et légumes avec la pomme, le céleri, le kiwi… Il faut aussi noter que diverses allergies croisées pollens-aliments sont décrites : les personnes sensibles au bouleau sont par exemple souvent atteintes par des allergies aux rosacées (pommes, pêches, cerises, abricots).
*         Les allergènes de contact
*         Boucles et boutons de jeans, fermetures éclair, montures de lunettes, bijoux de fantaisie… de nombreux accessoires contenant du nickel ou du chrome. Placés en contact direct avec la peau, ils sont à l’origine d’allergies. Citons également les allergies aux produits cosmétiques et parfums, ainsi que l’allergie au henné noir utilisé pour réaliser des tatouages temporaires.
*
L’allergie au latex
Le latex entre dans la composition de nombreux produits courants (gants, préservatifs, jouets et matériels médicaux..). La prévalence de l’allergie à cette substance augmente chez les personnels particulièrement exposés : les infirmières et les chirurgiens, les sujets ayant bénéficié de plusieurs interventions chirurgicales (comme les enfants opérés de spina bifida). Les personnes allergiques au latex souffrent, dans un tiers des cas, d’allergies croisées latex-aliments, au premier rang desquels la banane, l’avocat, le kiwi, la châtaigne et d’autres encore.
*         Les venins d’hyménoptères
*         Abeilles, guêpes, frelons, bourdons… il existe plus de 200 000 espèces d’hyménoptères. Quelques-unes sont particulièrement dangereuses pour les personnes allergiques à leur venin : l’allergie peut en effet déclencher un choc anaphylactique, potentiellement mortel.
*         Les médicaments
*         Les antibiotiques, et en particulier les béta-lactamines, sont les principales substances à l’origine d’allergies médicamenteuses. Viennent ensuite les anti-inflammatoires non stéroïdiens et  les curares (ou myorelaxants) utilisés en anesthésie générale. Mais, comme pour les aliments, tous les médicaments peuvent être responsables de réactions allergiques dues aux IgE ou aux lymphocytes T (on parle alors de toxidermies).
*
Les enjeux de la recherche
Notre environnement à l’origine de la multiplication des cas ?
La forte composante génétique des allergies est connue de longue date. Mais l’augmentation de la fréquence de ces maladies est beaucoup trop rapide pour être expliquée par un changement de notre constitution génétique. Cependant, il est désormais bien établi que l’expression de nos gènes peut être modifiée par l’environnement, via des mécanismes épigénétiques. Or, notre environnement subit actuellement des changements majeurs :
Le réchauffement climatique a pour conséquence un allongement de la période de pollinisation, une augmentation de la quantité de pollens dans l’air, la production de pollens dont le contenu allergénique est majoré. De plus, les aires de production des pollens allergisants sont modifiées, avec globalement une translation vers le nord. Il faut ajouter à cela les migrations assistées, notamment l’implantation ornementale de cyprès et de bouleaux loin de leur habitat naturel. La pollution atmosphérique, notamment l’ozone et les particules de diesel, aurait aussi un rôle dans l’augmentation de fréquence des allergies aux pollens.
D’autres explications sont également avancées : des modifications de l’environnement intérieur, des régimes alimentaires, la multiplication des médicaments ou encore l’amélioration de l’hygiène pourrait contribuer à l’augmentation de la fréquence des allergies.

Un excès d’hygiène ?
Les progrès de l’hygiène depuis un siècle ont apporté beaucoup de bénéfices à la santé et ne sont pas étrangers à l’augmentation de l’espérance de vie. Cependant, plusieurs études suggèrent une moindre fréquence des maladies allergiques chez les sujets qui ont présenté des infections respiratoires répétées au cours de leurs premières années de la vie. Ainsi, l’amélioration régulière des conditions d’hygiène pourrait contribuer à l’augmentation de fréquence des maladies allergiques.

 

   DOCUMENT        inserm        LIEN

 
 
 
 

Bioéthique - L’édition génomique

 

       

 

 

 

 

 

Édition du génome : des possibilités inouïes qui posent des questions éthiques

SCIENCE 19.06.2018

Bioéthique - L’édition génomique

génomique
Étude conduite à l’échelle du génome, portant sur le  fonctionnement de l’organisme, d’un organe, d’une pathologie...
consiste à modifier le génome d’une cellule, qu’elle soit d’origine végétale, animale, ou humaine. Elle existe depuis une quarantaine d’années mais l’avènement de la technique CRISPR-Cas l’a rendue accessible à la plupart des laboratoires. Certains travaux soulèvent des questions éthiques pour la santé des individus, la préservation de la biodiversité et de l’environnement ou encore pour le bien-être animal. Le point avec Hervé Chneiweiss, président du comité d’éthique de l’Inserm.

Pouvez-vous expliquer en quelques mots comment fonctionne l’édition génomique ?
Les chercheurs utilisent un guide couplé à des nucléases
nucléases
Enzyme capable de couper des acides nucléiques au niveau des liaisons phosphodiesters.
capables de reconnaître spécifiquement une séquence sur le génome et de couper à cet endroit. Ensuite des processus naturels de réparation se déclenchent et commettent des erreurs, ce qui permet d’inactiver le gène ciblé. Il est également possible de fournir à la cellule, en même temps que la nucléase, la copie d’un gène pour qu’il soit intégré au moment de la réparation et remplace le gène initial. Les possibilités sont multiples : les chercheurs peuvent créer des mutations précises dans des gènes pour en observer les effets ou à l’inverse corriger des mutations, ils peuvent inactiver des gènes, insérer de nouveaux fragments d’ADN, modifier l’expression des gènes, etc.
L’édition génomique connaît un regain d’intérêt depuis l’avènement de CRISPR-Cas, pourquoi ?
Les nucléases de type doigts de zinc et Talen – disponibles avant 2012 et encore utilisées aujourd’hui – sont complexes à développer. Il s’agit de protéines issues de bactéries et leur fonction première n’est pas d’aller modifier sur mesure l’ADN d’une espèce. Pour les rendre spécifiques d’une séquence cible et faire en sorte qu’elles ne coupent qu’à cet endroit, il y a un travail de développement et de production de protéines long et fastidieux avant de pouvoir les utiliser. De plus, leur taille les rend très difficiles à faire entrer dans une cellule. La mise au point peut durer plusieurs mois. Elle est réservée à des laboratoires spécialisés.
CRISPR-Cas9 a bouleversé la façon de faire. Cette fois ce n’est plus une protéine qui reconnaît la séquence cible mais un ARN
ARN
Molécule issue de la transcription d'un gène.
, lui-même couplé à une protéine Cas (Cas9 le plus souvent, mais il existe d’autres protéines Cas). Celle-ci coupera l’ADN dans un second temps, là où l’ARN s’est fixé. Il suffit donc de produire un ARN dont la séquence est complémentaire de celle de la séquence cible, ce qui se fait extrêmement facilement et à moindre coût. À peu près n’importe quel laboratoire de biologie peut utiliser cette technique et a désormais accès à l’édition génomique.


CRISPR-Cas9 : une méthode révolutionnaire – animation pédagogique – 2 min 10 – 2016
Quelles recherches sont menées aujourd’hui avec l’édition génomique ?
Il s’agit surtout de recherche fondamentale. L’édition génomique permet d’obtenir facilement des modèles cellulaires et animaux porteurs de mutations particulières ou chez lesquels un gène a été inactivé, par exemple pour étudier le développement ou des processus physiopathologiques. Il y a aussi des analyses à grande échelle d’invalidation de gènes ou encore des essais précliniques, conduits chez l’animal dans un but thérapeutique, afin de corriger une mutation ou de rendre un organisme résistant à une maladie.
Quelques essais cliniques sont même en cours chez l’Homme : en infectiologie pour lutter contre le VIH en conférant aux cellules de l’organisme une résistance au virus, en cancérologie pour rendre les cellules T agressives contre la tumeur, ou encore contre la mucopolysaccharidose, une maladie lysosomale, pour forcer l’expression d’une enzyme déficiente. Il s’agit chaque fois de cellules modifiées ex vivo puis réinjectées au patient. Modifier l’ADN d’une cellule in vivo est bien plus complexe. Ceci a déjà été réalisé chez une souris pour corriger une forme génétique de surdité, mais plusieurs années seront encore nécessaires avant les premières applications chez l’Homme.
Existe-il une réglementation particulière pour l’utilisation de l’édition génomique ?
Aucune en dehors des procédures habituelles qui s’appliquent à toute manipulation génétique dans les laboratoires de recherche, y compris les restrictions concernant l’embryon humain. La France est signataire de la convention d’Oviedo, qui interdit de pratiquer des modifications génétiques transmissibles à la descendance. Il est donc possible d’utiliser l’édition génomique chez l’embryon humain dans des conditions de recherche, puisqu’à leur issue l’embryon doit être détruit, mais pas dans un contexte de procréation médicalement assistée. Cette convention internationale est la seule loi internationale en vigueur dans le domaine de la bioéthique.

Que pensez-vous des travaux d’édition génomique qui ont déjà eu lieu chez l’embryon humain en Chine et aux États-Unis ?
La première expérience a eu lieu en Chine, en 2015. Elle visait à corriger une mutation conférant la bêta-thalassémie, une maladie sanguine. Plus récemment, en 2017, une équipe américaine a tenté de corriger une mutation associée à une pathologie cardiaque grave. Il ne s’agit en aucun cas de travaux cliniques et ces embryons ne sont pas destinés à être implantés chez une femme. Il s’agit de recherche fondamentale pour évaluer l’efficacité et la sécurité de CRISPR-Cas sur des embryons qui sont ensuite détruits. Les résultats sont d’ailleurs médiocres. Le pourcentage d’embryons effectivement modifiés est relativement faible et le risque de mosaïcisme – c’est-à-dire le risque que les cellules d’un même embryon ne possèdent plus toutes le même patrimoine génétique – est élevé.
Pour de nombreux organismes scientifiques et comités éthiques, dont celui de l’Inserm, il est actuellement inenvisageable de recourir à ce type d’intervention chez un embryon qui serait destiné à faire naître un enfant faute de garanties d’efficacité et de sécurité suffisantes, même si la convention d’Oviedo était modifiée.
Cela soulève néanmoins d’importantes questions éthiques. Que se passera-t-il si l’édition génomique devient sûre et efficace chez l’embryon ? Sera-t-il possible de modifier le génome selon le désir des parents ?
À terme, dans l’hypothèse où la technique CRISPR-Cas deviendrait efficace et fiable chez l’embryon, elle pourrait être utilisée dans des indications rares et très précises : par exemple pour éviter la transmission d’une maladie grave quand les deux parents en sont atteints et que le risque de donner naissance à un enfant malade est de 100%. Il s’agira alors de corriger la mutation chez l’embryon ou même en amont, au niveau des cellules germinales
cellules germinales
À l'origine de la formation des gamètes, leurs gènes sont transmis à la descendance.
avant la fécondation. L’Académie de médecine s’est prononcée en faveur de cette possibilité.
Quant au risque d’eugénisme, cela relève à mon avis du fantasme. D’abord parce que cette recherche est très encadrée, y compris en Chine et aux États-Unis. Et puis, on oublie trop souvent que l’eugénisme se pratique déjà, par exemple avec l’élimination de petites filles à la naissance dans certains pays. Il n’a pas fallu attendre l’édition génomique pour cela. Mais il est en effet nécessaire d’encadrer l’utilisation qui pourrait en être faite.

Quelles autres questions éthiques soulève l’édition génomique ?
L’une des principales préoccupations est la maîtrise de cette technique, condition sine qua non pour une utilisation chez l’Homme. Or plusieurs freins restent à lever, comme le risque de coupures hors cible qui peuvent générer des mutations ailleurs dans le génome, avec des conséquences délétères. Il y a également le fait qu’il existe une hétérogénéité génétique entre plusieurs cellules soumises à une même édition génomique : la technique fait en effet appel à des mécanismes qui réparent l’ADN de façon aléatoire. Autre question à laquelle nous ne savons pas encore répondre : comment réagissent les cellules modifiées à long terme, y a-t-il des effets indésirables ? D’autres préoccupations portent sur le devenir d’organismes modifiés, autres qu’humains, et les conséquences pour ces espèces et pour l’environnement.
Il existe en effet une polémique sur la modification génétique de populations de moustiques visant à réduire le risque de maladies à transmission vectorielle. Pouvez-vous préciser de quoi il s’agit ?
Une technique appelée guidage de gènes reposant sur l’utilisation de CRISPR-Cas permet de forcer la transmission d’un gène modifié dans une espèce, au cours des générations. Elle est proposée pour rendre une population de moustiques stérile ou lui conférer une résistance à l’agent pathogène. La faisabilité a été démontrée au laboratoire. En champ réel, une expérimentation a déjà été menée au Panama avec des moustiques transgéniques produits par une autre méthode. Elle a permis de réduire la quantité de moustique Aedes aegypti porteurs du virus de la dengue, avec une diminution de 93% du taux de contamination dans la région concernée.
Ces pratiques soulèvent beaucoup de questions : quel est le risque de "contamination" d’espèces autres que la population cible ? Quel est l’impact écologique – et pour la biodiversité – de l’éradication de moustiques qui sont des insectes pollinisateurs et nourrissent les larves de poissons ? Quels sont les risques à long terme pour l’espèce en cas d’acquisition de nouvelles "propriétés" ? Comment arrêter la propagation du gène en cas de perte de contrôle de la technologie ? Des études doivent être conduites sur des périodes longues, avec l’élaboration de scénarios multiples par des équipes pluridisciplinaires associant biologie moléculaire, écologie, sciences sociales, pour une évaluation prudente de la balance bénéfice/risque à long terme.
En outre, il n’y a pas que les moustiques. Des travaux similaires portent sur des espèces végétales envahissantes, afin de contrôler leur dispersion ou d’éliminer leur résistance aux herbicides ou pesticides. Enfin, d’autres questions se posent avec la modification génétique d’espèces à des fins commerciales. Ainsi, en Argentine et en Uruguay, des fermes expérimentales modifient le génome de moutons et de veaux pour augmenter la taille de leurs muscles dans le but de produire deux fois plus de viande. Quelles sont les conséquences pour la qualité de vie animale et pour les consommateurs ?

Il y a deux ans, la CIA déclarait CRISPR-Cas "arme de destruction massive potentielle", compte tenu de sa facilité d’utilisation. Peut-on imaginer des menaces particulières par exemple à visée terroriste ?
Je crois que c’est exagéré. Produire des organismes génétiquement modifiés qui seraient particulièrement virulents serait très dangereux pour les chercheurs eux-mêmes et nécessiterait des compétences et des équipements très pointus. Cela me paraît peu probable.

Une recherche responsable
Pour créer une gouvernance globale concernant l’édition génomique, le comité d’éthique de l’Inserm a créé ARRIGE (Association for Responsible Research and Innovation in Genome Editing) en 2018. Cette association internationale entend fournir aux chercheurs publics et privés, aux associations de patients, aux citoyens et aux politiques les données pour développer l’édition génomique dans un contexte sécurisé et serein sur le plan sociétal.

 

   DOCUMENT        inserm        LIEN

 
 
 
 

Le cerveau sous toutes les coutures

 

               

 

 

 

 

Le cerveau sous toutes les coutures

Observer le cerveau, c’est avant tout jeter un œil dans un miroir qui révèle son fonctionnement. Voilà le credo de l’unité Inserm 1253 à Tours, plus connue sous le nom d’iBrain.

Depuis 1988, les chercheurs de l'unité iBrain abordent la psychiatrie par le biais des phénomènes biologiques. À l’époque, dans un climat intellectuel où la psychanalyse avait encore la prétention d’éclairer l’origine des troubles mentaux, il s’agissait d’une approche osée, voire assez radicale. Issue de la rencontre entre un pédopsychiatre, Gilbert Lelord, et un physicien spécialiste d’imagerie par ultrasons, Léandre Pourcelot, iBrain a pourtant fait le choix de mettre le cerveau au centre de ses attentions, afin de mettre ses travaux au service de la recherche fondamentale, du diagnostic et de la thérapeutique. Par la suite, l’unité a grandi autour de deux grands axes de recherche : l’un des troubles du développement les plus communs chez l’enfant, l’autisme, et la maladie psychiatrique la plus fréquente chez l’adulte, la dépression.
       

 Une fois n’est pas coutume, le cerveau nous est donné à voir physiquement. Parce que la tractographie ne produit qu’une image du déplacement de molécules d’eau au travers de faisceaux de fibres blanches et illustre imparfaitement l’anatomie réelle, il est parfois difficile d’apprécier le niveau de preuve associé à une image IRM. Afin de réduire cette incertitude et de valider les techniques utilisées pour la recherche et la clinique, Christophe Destrieux et son équipe utilisent une méthode peu commune : ils comparent l’image et l’organe, c’est-à-dire les données in vivo aux données ex vivo.        © Inserm/François Guénet
       

Classer pour mieux traiter
Aujourd’hui, c’est Catherine Belzung, neuroscientifique, qui a pris la tête de la maison. Elle tenait à orienter la stratégie scientifique du laboratoire en direction de la médecine personnalisée, dans l’espoir de réduire les difficultés thérapeutiques que l’on rencontre d’ordinaire en psychiatrie. “Dans le cas de la dépression, seuls 40% des patients répondent aux antidépresseurs. Ces traitements ciblent des causes qui ne sont probablement pas les causes universelles de la dépression, explique la chercheuse. Nous pensons que la dépression existe sous différentes formes, qu’il faut identifier précisément.” Autrement dit, les différentes maladies psychiatriques ne constituent pas des entités homogènes : on cherche à les répartir en différents sous-types. “Actuellement, nous utilisons des antidépresseurs qui agissent sur la neurotransmission. Mais on peut imaginer qu’il existe d’autres formes de dépression liées à des phénomènes différents, comme la neuro-inflammation”, précise-t-elle avec enthousiasme.

Étonnamment, la réflexion de la neuroscientifique a été nourrie par l’histoire de la médecine. “Au 19e siècle, on traitait la fièvre non pas comme un symptôme, mais comme une affection en tant que telle dont les causes sont indifférenciées, ajoute-t-elle. Ce n’est que plus tard que nous avons compris qu’elle n’était qu’un signe derrière lequel se cachaient différentes maladies. C’est cette comparaison qui a amorcé la définition de mon programme de recherche. La dépression due à un déficit de neurotransmission monoaminergique, il faut la prendre en charge avec des antidépresseurs. Celle qui est due à la neuro-inflammation, il faut la traiter avec d’autres substances. De même, il existe peut-être un autre type de dépression liée à la connectivité cérébrale, que nous pourrions attaquer avec des traitements à base de neurostimulation.”  
Or, ces différentes formes de dépression se manifestent de façon identique, un peu comme la fièvre. Pour les distinguer, les chercheurs ont développé des outils d’imagerie qui permettent de faire des images de la neurotransmission, de la neuroinflammation..., afin de déterminer de quel type de dépression souffre tel ou tel patient. Une fois que le sous-type a été identifié, il sera possible de traiter le malade de manière personnalisée. Pour mettre sur pied une véritable typologie de la dépression qui permettrait de soulager efficacement une majorité de malades, les chercheurs sont en quête de marqueurs peu coûteux et faciles à utiliser auxquels on pourrait avoir recours de manière routinière. Les outils disponibles actuellement, ne sont pas toujours adaptés : on leur préfèrerait par exemple des marqueurs plasmatiques. C’est l’un des prochains défis que s’est lancé le laboratoire tourangeau.

14 regards sur le cerveau
La grande caractéristique d’iBrain, c’est d’être situé dans une petite ville où il est impossible d’accéder à des milliers de sujets pour effectuer des études cliniques. De cela, naît une nécessité : formuler des hypothèses très spécifiques sur la manière dont on pourrait stratifier les populations de patients. Ainsi, l’unité associe des psychiatres, qui proposent des hypothèses, et des experts en technologies pour la santé qui développent les outils nécessaires à l’affinement du diagnostic. Cette démarche s’oppose à une approche big data qui consisterait à analyser le génome de milliers de sujets afin de dégager des homologies, par exemple.

Cette approche fine exige des interactions constantes entre chercheurs de divers horizons. On dénombre d’ailleurs 14 disciplines différentes dans l’unité : linguistique, philosophie, physique, chimie, en passant par les disciplines médicales traditionnelles comme la neurologie, la biologie et les neurosciences : le laboratoire est une véritable auberge espagnole scientifique. “Le fait de faire travailler toutes ces personnes ensemble de manière intégrée est très efficace. Évidemment, cela suppose aussi des qualités humaines en matière de diplomatie, de compromission et de communication, puisque nous faisons collaborer des chercheurs qui viennent de cultures universitaires très différentes au sein d’une toute petite structure”, précise Catherine Belzung. Les linguistes de l’équipe, par exemple, travaillent sur l’expression des personnes avec autisme – qui pour certaines ont des troubles de la communication ou possèdent un langage atypique sur le plan grammatical. Les philosophes, quant à eux, se rattachent à un courant relativement nouveau appelé “la philosophie dans les sciences” ; ils étudient les concepts scientifiques au sein même du laboratoire, analysent leur utilisation et leurs aspects sémantiques, puis formulent des propositions pour préciser ces concepts. La richesse de cette collaboration est complétée par une approche scientifique multi-échelles qui facilite le transfert des découvertes faites sur l’animal vers la clinique.

Le temps des grandes découvertes
Les technologies pour la santé (ultrasons, radiopharmaceutiques) qui n’étaient pas destinés à avoir des applications directes dans le domaine de la psychiatrie ont, à Tours, permis des avancées considérables dans plusieurs domaines. Ainsi, l’histoire de l’unité a été marquée par la découverte des premiers gènes de l’autisme, celle de la contribution de la neurogénèse dans les effets des antidépresseurs, ou encore la validation de l’hypothèse selon laquelle l’autisme était dû à des troubles cérébraux, et non à un déficit affectif. Les équipes ont également développé de nouveaux traceurs – comme le LBT-999, marqueur du système dopaminergique
dopaminergique
Relatif à la dopamine ou au cellules sécrétant cette hormone.
. Le précédent directeur d’unité, Denis Guilloteau, spécialiste de radiopharmaceutiques, a monté une structure publique-privée associée à un cyclotron qui permet de fabriquer des molécules radiomarquées et d’en développer de nouvelles.
Au sein de l’unité, l’équipe Imagerie, biomarqueurs
biomarqueurs
Paramètre physiologique ou biologique mesurable, qui permet par exemple de diagnostiquer ou de suivre l’évolution d’une maladie.

et thérapie a désormais pour mission d’inventer et développer de nouvelles approches technologiques pour explorer les pathologies sur lesquelles iBrain s’est spécialisée : l’autisme et la dépression, mais aussi la déficience intellectuelle, la sclérose latérale amyotrophique, la maladie de Parkinson et celle d’Alzheimer. Grâce aux flux d’hypothèses réciproques qui circulent entre les spécialistes de technologies pour la santé et ceux de neurosciences et de psychiatrie, le cerveau est cerné de toutes parts. “Nous finirons bien par le voir tel qu’il est !”, se réjouit Catherine Belzung.
 
Un reportage à retrouver dans le magazine de l'Inserm

 

 DOCUMENT        inserm        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 ] Précédente - Suivante
 
 
 


Accueil - Initiation musicale - Instruments - Solf�ge - Harmonie - Instruments - Vidéos - Nous contacter - Liens - Mentions légales /confidentialit�

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon

Google